Variant of KP01: Multiple Choice KP (MCKP)

In addition to the input data for KP01: the set of the n items is partitioned into k disjoint subsets $N_1, N_2, ..., N_k$.

• determine a subset of the n items, with at most one item for each subset N_h (h = 1, ..., k), so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity C.

BLP Model for MCKP (2)

• determine a subset of the n items, with at most one item for each subset N_h (h = 1, ..., k), so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity C.

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{j \in N_h} x_j \le 1 \qquad (h = 1, ..., k)$$

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

BLP Model

MCKP is NP-Hard

BLP Model for MCKP (3)

- * Define the *Binary Matrix* A_{hj} (h = 1, ..., k; j = 1, ..., n), with:
- $A_{hj} = 1$ if $j \in N_h$
- $A_{hi} = 0$ otherwise.
- Matrix A_{hi} belongs to the input data of the instance

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{j=1,n} A_{hj} x_j \leq 1 \qquad (h = 1, ..., k)$$

$$x_i \in \{0, 1\}$$
 $(j = 1, ..., n)$

Multiple Choice KP (MCKP) is NP-Hard

MCKP: in addition to the input data for KP01: the set of the n items is partitioned into k disjoint subsets N_1 , $N_2, ..., N_k$.

- determine a subset of the n items, with at most one item for each subset N_h (h = 1, ..., k), so as to maximize the global profit, and such that the global weight is not larger than the knapsack capacity C.
- Input: $m, C, k, (P_j), (W_j) (j = 1, ..., n), N_h (h = 1, ..., k)$
- Size: 3 + 2n + k * n (matrix A_{hi}), with $k \le n : n * n$
- Size: 3 + 2n + n (partition of the set $\{1, 2, ..., n\}$) : n.
- Binary Decision Tree: similar to the decision tree of KP-01: n levels, 2 descendent nodes and constant time for each node:
- $MCKP \in Class NP$;
- MCKP is a "generalization" of $KP-01: KP-01 \propto MCKP$

BLP Model for MCKP

- * Binary Matrix A_{hj} (h = 1, ..., k; j = 1, ..., n), with:
- $A_{hj} = 1$ if $j \in N_h$; $A_{hj} = 0$ otherwise.

$$\max \quad \sum_{j=1,n} P_j x_j$$

$$\sum_{j=1,n} W_j x_j \leq C$$

$$\sum_{i=1,n} A_{hi} x_i \le 1 \qquad (h = 1, ..., k)$$

$$x_j \in \{0, 1\}$$
 $(j = 1, ..., n)$

The *BLP Model* has a number of binary variables x_j polynomial in the size of *MCKP*:

$$MCKP \in Class NP$$

Multiple Knapsack Problem (MKP01)

```
Given: n items, m containers (knapsacks)
```

```
P_j profit of item j (j = 1, ..., n)
```

$$W_j$$
 weight of item j $(j = 1, ..., n)$

$$C_i$$
 capacity of container i $(i = 1, ..., m)$

insert a subset of the n items in each container in order to maximize the global profit of the items inserted in the containers, and in such a way that the sum of the weights of the items inserted in each container i (i = 1, ..., m) is not greater than the corresponding capacity C_i

Each item can be inserted in at most one container.

MKP01 (2)

Given: n items, m containers (knapsacks)

$$P_j$$
 profit of item j $(j = 1, ..., n)$

$$W_j$$
 weight of item j $(j = 1, ..., n)$

$$C_i$$
 capacity of container i $(i = 1, ..., m)$

insert a subset of the n items in each container in order to maximize the global profit of the items inserted in the containers, and in such a way that the sum of the weights of the items inserted in each container i (i = 1, ..., m) is not greater than the corresponding capacity C_i

$$P_j > 0 \ (j = 1, ..., n)$$

$$W_j > 0 \ (j = 1, ..., n)$$

MKP01 (3)

Given: n items, m containers (knapsacks)

$$P_j$$
 profit of item j $(j = 1, ..., n)$

$$W_j$$
 weight of item j $(j = 1, ..., n)$

$$C_i$$
 capacity of container i $(i = 1, ..., m)$

$$P_j > 0 \ (j = 1, ..., n); \ W_j > 0 \ (j = 1, ..., n)$$

$$\sum_{j=1,n} W_j > \max\{ C_i : i = 1, ..., m \}$$

$$W_i \leq \max\{C_i: i=1,...,m\} \quad (j=1,...,n)$$

$$\min\{ C_i : i = 1, ..., m \} \ge \min\{ W_j : j = 1, ..., n \}$$

Mathematical Model of MKP01

$$x_{ij} = \begin{cases} 1 & \text{if item } j \text{ is inserted in container } i \\ 0 & \text{otherwise} \end{cases}$$
 $(i = 1, ..., m; j = 1, ..., n)$

$$\sum_{j=1,n} P_j \left(\sum_{i=1,m} x_{ij}\right)$$

$$\sum_{j=1,n} W_j x_{ij} \leq C_i \quad (i = 1, ..., m)$$

$$x_{ii} \in \{0,1\} \qquad (i = 1, ..., m; j = 1, ..., n)$$

???

MKP01 is NP-Hard

```
MKP01: given: n items, m containers (knapsacks),
 P_j profit of item j, W_j weight of item j ( j = 1, ..., n),
 C_i capacity of container i (i = 1, ..., m):
   insert a subset of the n items in each of the m containers in order to maximize the global
   profit of the inserted items, and in such a way that the global weight of the items inserted
   in each container i (i = 1, ..., m) is not greater than the corresponding capacity C_i
Input: n, m, (P_i), (W_i) (j = 1, ..., n), (C_i) (i = 1, ..., m)
• Size: 2 + 2n + m : n + m, (m \le n : Size n)
• Decision Tree: n levels (one for each item j);
   (m+1) descendent nodes (insert item j in knapsack 1, or 2, ..., or
   m, or in no knapsack) and constant time for each node:
    MKP01 \in Class NP;
   (BLP model with (m * n) binary variables x_{ii})
```

• *MKP01* is a "generalization" of *KP-01* : *KP-01* ∝ *MCKP*

Mathematical Model of MKP01

$$x_{ij} = \begin{cases} 1 & \text{if item } j \text{ is inserted in container } i \\ 0 & \text{otherwise} \end{cases} \quad (i = 1, ..., m; j = 1, ..., n)$$

$$\max \sum_{j=1,n} P_j (\sum_{i=1,m} x_{ij})$$

$$\sum_{j=1,n} W_j x_{ij} \leq C_i \quad (i = 1, ..., m)$$

$$\sum_{i=1,m} x_{ij} \leq 1 \quad (j = 1, ..., n)$$

$$x_{ij} \in \{0,1\} \quad (i = 1, ..., m; j = 1, ..., n)$$

BLP Model

MKP01 is NP-Hard

Generalized Assignment Problem (GAP)

```
Given: m machines (persons) and n jobs (tasks): c_{ij} cost for assigning job j to machine i (i = 1, ..., m; j = 1, ..., n); r_{ij} amount of resource utilized for assigning job j to machine i (i = 1, ..., m; j = 1, ..., n); r_{ij} \ge 0; b_i amount of resource available for machine i (i = 1, ..., m), b_i > 0.
```

Assign each job to a machine so as to minimize the global cost, and in such a way that the global resource utilized by each machine i is not greater than the corresponding available resource b_i

Generalized Assignment Problem (GAP)

Assign each job to a machine so as to minimize the global cost, and in such a way that the global resource utilized by each machine i is not greater than the corresponding available resource b_i .

GAP is NP-Hard

The Feasibility Problem of GAP is NP-Hard

Decisional binary variables:

```
x_{ij} = 1 if job j is assigned to machine i;

x_{ii} = 0 otherwise; (i = 1, ..., m; j = 1, ..., n)
```

Mathematical Model of GAP

Objective function (minimum cost)

$$\min \quad \sum_{i=1,m} \sum_{j=1,n} c_{ij} x_{ij}$$

One machine assigned to each job:

$$\sum_{i=1,m} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{j=1,n} r_{ij} x_{ij} \leq b_i$$
 $(i=1,...,m)$

$$x_{ij} \in \{0, 1\}$$
 $(i = 1, ..., m, j = 1, ..., n)$

BLP Model

Maximization Version of GAP (Max-GAP)

• Objective function (maximum "cost") $\max \ \Sigma_{i=1,m} \Sigma_{i=1,n} \ c_{ii} \ x_{ii}$

One machine assigned to each job:

$$\sum_{i=1,m} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{j=1,n} r_{ij} x_{ij} \leq b_i$$
 $(i=1,...,m)$

$$x_{ij} \in \{0, 1\}$$
 $(i = 1, ..., m, j = 1, ..., n)$

GAP is NP-Hard

Given: *m machines* and *n jobs*:

 c_{ij} cost $(r_{ij}$ amount of resource utilized) for assigning job j to machine i (i = 1, ..., m; j = 1, ..., n);

 b_i amount of resource available for machine i (i = 1, ..., m):

Assign each job to a machine so as to minimize the global cost, and in such a way that the global resource utilized by each machine i is not greater than the corresponding available resource b_i .

Input:
$$m, n, (c_{ij}), (r_{ij}) (i = 1, ..., m; j = 1, ..., n);$$

 $(b_i) (i = 1, ..., m)$

Size: 2 + 2m * n + m : m * n

The Feasibility Problem of GAP (F-GAP) is NP-Hard.

Feasibility Problem of GAP (F-GAP)

Given: m machines and n jobs:

- r_{ij} amount of resource utilized for assigning job j to machine i (i = 1, ..., m; j = 1, ..., n);
- b_i amount of resource available for machine i (i = 1, ..., m):

Assign each job to a machine in such a way that the global resource utilized by each machine i is not greater than the corresponding available resource b_i.

```
Input: m, n, (r_{ij}) (i = 1, ..., m; j = 1, ..., n); <math>(b_i) (i = 1, ..., m):
Size: m * n
```

- Decision Tree: n levels (one for each job j);
- * m descendent nodes (insert job j in machine 1, or 2, ..., or m) and constant time for each node:

F- $GAP \in Class NP$

Also $GAP \in Class\ NP$ (same Size and Decision Tree as F-GAP); (BLP model with (m*n) binary variables x_{ij})

Feasibility Problem of GAP (F-GAP)

Given: *m machines* and *n jobs*:

 r_{ij} amount of resource utilized for assigning job j to machine i (i = 1, ..., m; j = 1, ..., n);

 b_i amount of resource available for machine i (i = 1, ..., m):

```
PP \propto F - GAP:
```

- Given any instance of PP: t, (a_i) , b (Size: t)
- 1) Define (in time O(t)) an instance $(m, n, (r_{ii}), (b_i))$ of F-GAP:
 - * n := t
 - * $m := 2; b_1 := b; b_2 := \sum_{i=1,t} a_i b$
 - * $r_{1i} := a_i ; r_{2i} := a_i (j = 1, ..., n).$
- 2) Determine (if it exists) a feasible solution (x_{1i}, x_{2i}) of *F-GAP*.
- 3) If a feasible solution of F-GAP exists, then PP has a feasible solution (x_{1i}, x_{2i})

Otherwise: *PP* has no feasible solution.

Computing time O(n) (hence O(t), polynomial in the size of PP).

* F-GAP is NP-Hard

Bin Packing Problem (BPP)

Given:

```
n items;

W_j weight of item j (j = 1, ..., n) (W_j > 0);

m containers (bins), each with capacity C:
```

insert all the n items in the containers in order to minimize the number of used containers, and in such a way that the sum of the weights of the items inserted in a container is not greater than the capacity C.

$$W_j < C$$
 $j = 1, ..., n$
$$\sum_{j=1,n} W_j > C$$

Bin Packing Problem (BPP)

Given:

```
n items;

W_j weight of item j (j = 1, ..., n) (W_j > 0);

m containers (bins), each with capacity C:
```

insert all the n items in the containers in order to minimize the number of used containers, and in such a way that the sum of the weights of the items inserted in a container is not greater than the capacity C.

BPP is NP-Hard

The Feasibility Problem of BPP is NP-Hard

Mathematical Model of BPP

```
x_{ij} = \begin{cases} 1 & \text{if item } j \text{ is inserted in container } i \\ 0 & \text{otherwise} \end{cases} (i = 1, ..., m; j = 1, ..., n)
```

$$y_i = \begin{cases} 1 & \text{if container } i \text{ is used} \\ 0 & \text{otherwise} \end{cases}$$
 $(i = 1, ..., m)$

Mathematical Model of BPP (2)

min
$$\sum_{i=1,m} y_i$$

$$\sum_{j=1,n} W_j x_{ij} \leq C \qquad (i = 1, ..., m)$$

$$\sum_{i=1,m} x_{ij} = 1 \qquad (j = 1, ..., n)$$

$$y_i \in \{0, 1\} \qquad (i = 1, ..., m)$$

$$x_{ij} \in \{0, 1\} \qquad (i = 1, ..., m; j = 1, ..., n)$$

$$2??$$

Bin Packing Problem (BPP) is NP-Hard

Given: n items; m bins (each with capacity C); W_i weight of item j (j = 1, ..., n):

insert all the n items in the bins in order to minimize the number of used bins, and in such a way that the global weight of the items inserted in a bin is not greater than the capacity C.

- Input: $n, m, C, (W_j)$ (j = 1, ..., n); Size: 3 + n : n
- $m \leq n$

Feasibility Problem of BPP (F-BPP)

```
Given: n items; m bins (each with capacity C);
   W_i weight of item j (j = 1, ..., n):
   insert all the n items in the m bins in such a way that the global weight of the
  items inserted in a bin is not greater than the capacity C.
 F-BPP is NP-Hard
• Input: n, m, C, (W_i) (j = 1, ..., n); Size: 3 + n : n
  Decision Tree: n levels (one for each item j);
 * m descendent nodes (insert item j in bin 1, or 2, ..., or m)
  and constant time for each node (m \le n):
   F-BPP \in Class NP;
  Also BPP \in Class\ NP (same Size and Decision Tree as F-BPP);
```

(BLP model with (m * n + m) binary variables x_{ii}, y_i)

F-BBP is NP-Hard

Given: n items; m bins (each with capacity C); W_j weight of item j (j = 1, ..., n): insert all the n items in the m bins in such a way that the global weight of the items inserted in a bin is not greater than the capacity C.

- *PP* ∝ *F*-*BPP* :
- Given any instance of PP: t, (a_i) , b (Size: t)
- 1) Define (in time O(t)) an instance $(n, (W_j), m, C)$ of F-BPP:
 - * n := t
 - * C := b
 - * m := 2
 - * $W_i := a_i \quad (j = 1, ..., n).$
- 2) Determine (if it exists) a feasible solution (x) of F-BPP.
- 3) If a feasible solution (x_{1j}, x_{2j}) of F-BPP exists, then PP has a feasible solution (x_{1j}, x_{2j})

Otherwise: PP has no feasible solution.

Computing time O(n) (hence O(t), polynomial in the size of PP)

F-BPP is a particular case of F-GAP

F-GAP: given: m machines and n jobs:

- r_{ij} amount of resource utilized for assigning job j to machine i (i = 1, ..., m; j = 1, ..., n);
- b_i amount of resource available for machine i (i = 1, ..., m): assign each job to a machine so that the global resource utilized by each machine i is not greater than the available resource b_i .

```
F-BPP: given: n items; m bins (each with capacity C); W_j weight of item j (j = 1, ..., n): insert all the n items in the m bins so that the global weight of the items inserted in a bin is not greater than the capacity C.
```

Arising when:

$$r_{ij} := W_j$$
 $(i = 1, ..., m; j = 1, ..., n);$
 $b_i := b$ $(i = 1, ..., m)$

Mathematical Model of BPP (2)

(M1) min
$$\sum_{i=1,m} y_i$$

$$\begin{split} \sum_{j=1,n} W_j \, x_{ij} &\leq C & (i=1,...,m) \\ \sum_{i=1,m} x_{ij} &= 1 & (j=1,...,n) \\ x_{ij} &\leq y_i & (i=1,...,m; j=1,...,n) \\ y_i &\in \{0,1\} & (i=1,...,m; j=1,...,m) \\ x_{ij} &\in \{0,1\} & (i=1,...,m; j=1,...,n) \end{split}$$

BLP Model

Mathematical Model of BPP (2)

(M1) min
$$\sum_{i=1,m} y_i$$

$$\begin{split} \sum_{j=1,n} W_j \ x_{ij} &\leq C \\ \sum_{i=1,m} x_{ij} &= 1 \\ x_{ij} &\leq y_i \\ y_i &\in \{0,1\} \\ x_{ij} &\in \{0,1\} \\ (i=1,...,m; j=1,...,n) \\ (i=1,...,m) \\ (i=1,...,m) \\ (i=1,...,m) \end{split}$$

(m + n + m n) constraints

Alternative Models of BPP

(M2) min
$$\sum_{i=1,m} y_i$$

$$\sum_{j=1,n} W_j x_{ij} \leq C$$
 $(i = 1, ..., m)$ $\sum_{i=1,m} x_{ij} = 1$ $(j = 1, ..., n)$ $\sum_{j=1,n} x_{ij} \leq M y_i$ $(i = 1, ..., m)$ $M \geq n$ $y_i \in \{0, 1\}$ $(i = 1, ..., m)$ $(i = 1, ..., m)$ $(i = 1, ..., m)$

(2m+n) constraints

Alternative Models of BPP (2)

(M3) min
$$\sum_{i=1,m} y_i$$

$$\sum_{j=1,n} W_j x_{ij} \leq C y_i$$
 $(i = 1, ..., m)$

$$\sum_{i=1,m} x_{ij} = 1$$
 $(j = 1, ..., n)$

$$y_i \in \{0, 1\}$$
 $(i = 1, ..., m)$

$$x_{ij} \in \{0, 1\}$$
 $(i = 1, ..., m; j = 1, ..., n)$

(m+n) constraints

Alternative Models of BPP (3)

$$(M1) \quad \sum_{j=1,n} W_{j} x_{ij} \leq C \qquad (i = 1, ..., m)$$

$$x_{ij} \leq y_{i} \qquad (i = 1, ..., m; j = 1, ..., n)$$

$$(M2) \quad \sum_{j=1,n} W_{j} x_{ij} \leq C \qquad (i = 1, ..., m)$$

$$\sum_{j=1,n} x_{ij} \leq M y_{i} \qquad (i = 1, ..., m) \quad M \geq n$$

$$(M3) \quad \sum_{j=1,n} W_{j} x_{ij} \leq C y_{i} \qquad (i = 1, ..., m)$$

- EXAMPLE: C = 100, $W_1 = 50$, n = 1000, ...
- "Linear Relaxation" of the variables y_i ($0 \le y_i \le 1$),
- $x_{11} = 1$, $y_1 = 0.5$ $(x_{1j} = 0, j = 2, ..., n)$:
 - (M2) and (M3): all constraints are satisfied
 - (M1) i = 1, j = 1: constraint $x_{ij} \le y_i$ ($1 \le 0.5$) is not satisfied

• Lower Bound LB on the value of the optimal solution of BPP:

$$LB = \sum_{j=1,n} W_j / C$$
 $(LB > 1);$ $k = \lceil LB \rceil$

* "Linear Relaxation" of the variables x_{ij} and y_i :

$$0 \le x_{ij} \le 1$$
, $0 \le y_i \le 1$ $(i = 1, ..., m; j = 1, ..., n)$.

• Optimal solution of the *Linear Relaxation of BPP (Model M1)*:

•
$$y_i = 1/LB = C/\Sigma_{j=1,n} W_j$$
 (<1) $i = 1, ..., k-1$

•
$$y_k = 1 - \sum_{i=1, k-1} y_i$$
 $(0 \le y_k < y_i < 1)$

•
$$y_h = 0$$
 $h = k + 1, ..., m$

•
$$x_{ij} = y_i$$
 $(0 \le x_{ij} < 1)$ $i = 1, ..., m; j = 1, ..., n$

• Optimal solution of the *Linear Relaxation of BPP* (Model M1):

•
$$y_i = 1/LB = C/\Sigma_{j=1,n} W_j$$
 (<1) $i = 1, ..., k-1$
• $y_k = 1 - \Sigma_{i=1, k-1} y_j$ (0 \le $y_k < y_1 < 1$)
• $y_h = 0$ $h = k+1, ..., m$
• $x_{ij} = y_i$ (0 \le $y_k < 1$) $i = 1, ..., m; j = 1, ..., n$

• Constraints:

$$\begin{split} & \sum_{j=1,n} W_j \ x_{ij} \leq C \qquad (i=1, ..., m) \\ & \sum_{j=1,n} W_j \ y_j = \sum_{j=1,n} W_j / LB = C \qquad (i=1, ..., k-1); \\ & \sum_{j=1,n} W_j \ y_k < \sum_{j=1,n} W_j y_1 = C; \\ & \sum_{j=1,n} W_j \ y_j = 0 < C \qquad (i=k+1, ..., m) \end{split}$$

• Optimal solution of the *Linear Relaxation of BPP* (Model M1):

•
$$y_i = 1/LB = C/\Sigma_{j=1,n} W_j$$
 (<1) $i = 1, ..., k-1$
• $y_k = 1 - \Sigma_{i=1, k-1} y_j$ (0 \le $y_k < y_i < 1$)
• $y_h = 0$ $h = k+1, ..., m$
• $x_{ij} = y_i$ (0 \le $y_k < 1$) $i = 1, ..., m; j = 1, ..., n$

• Constraints:

*
$$\Sigma_{i=1,m} x_{ij} = 1$$
 $(j = 1, ..., n)$
 $\Sigma_{i=1,m} y_j = 1$ $(j = 1, ..., n)$
* $x_{ij} \leq y_j$ $(i = 1, ..., m; j = 1, ..., n)$
 $x_{ij} = y_j$ $(i = 1, ..., m; j = 1, ..., n)$

• Optimal solution of the *Linear Relaxation of BPP (Model M1)*:

•
$$y_i = 1/LB = C/\Sigma_{j=1,n} W_j (<1)$$
 $i = 1, ..., k-1$

•
$$y_k = 1 - \sum_{i=1, k-1} y_i$$
 $(0 \le y_k < y_i < 1)$

•
$$y_h = 0$$
 $h = k + 1, ..., m$

•
$$x_{ij} = y_i$$
 $(0 \le y_k < 1)$ $i = 1, ..., m; j = 1, ..., n$

All the constraints are satisfied: feasible solution!

• Objective Function:

$$(M1) z = \sum_{i=1,m} y_i$$

• Optimal solution of the *Linear Relaxation of BPP* (Model M1):

•
$$y_i = 1/LB = C/\Sigma_{j=1,n} W_j (<1)$$
 $i = 1, ..., k-1$

•
$$y_k = 1 - \sum_{i=1, k-1} y_i$$
 $(0 \le y_k < y_i < 1)$

•
$$y_h = 0$$
 $h = k + 1, ..., m$

•
$$x_{ij} = y_i$$
 $(0 \le y_k < 1)$ $i = 1, ..., m; j = 1, ..., n$

All the constraints are satisfied: feasible solution!

• Objective Function:

(M1)
$$z = \sum_{i=1,m} y_i = 1$$
 (useless Lower Bound!)

Assignment Problem (AP)

Particular case of GAP:

```
m = n: n machines (persons) and n jobs (tasks): c_{ij} cost for assigning job j to machine i (i = 1, ..., n); r_{ij} = 1 amount of resource utilized for assigning job j to machine i (i = 1, ..., n); b_i = 1 amount of resource available for machine i (i = 1, ..., n).
```

AP is a Polynomial Problem solvable in O(n) time.

Mathematical Model of GAP

Objective function (minimum cost)

$$\min \quad \sum_{i=1,m} \sum_{j=1,n} c_{ij} x_{ij}$$

One machine assigned to each job:

$$\sum_{i=1,m} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{j=1,n} r_{ij} x_{ij} \leq b_i$$
 $(i=1,...,m)$

$$x_{ij} \in \{0, 1\}$$
 $(i = 1, ..., m, j = 1, ..., n)$

BLP Model

Mathematical Model of AP

Objective function (minimum cost)

$$\min \quad \sum_{i=1,n} \sum_{j=1,n} c_{ij} x_{ij}$$

One machine assigned to each job:

$$\sum_{i=1,n} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{j=1,n} x_{ij} \leq 1$$
 $(i=1,...,n)$

$$x_{ij} \in \{0, 1\}$$
 $(i = 1, ..., n, j = 1, ..., n)$

BLP Model

Mathematical Model of AP

• Objective function (minimum cost)

$$\min \quad \sum_{i=1,n} \sum_{j=1,n} c_{ij} x_{ij}$$

One machine assigned to each job:

$$\sum_{i=1,n} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{j=1,n} x_{ij} \leq 1$$
: $\sum_{j=1,n} x_{ij} = 1$ $(i = 1, ..., n)$

$$0 \le x_{ij} \le 1$$
 $(i = 1, ..., n, j = 1, ..., n)$

Mathematical Model of AP

• Objective function (minimum cost) min $\sum_{i=1,n} \sum_{j=1,n} c_{ij} x_{ij}$

One machine assigned to each job:

$$\sum_{i=1,n} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{i=1,n} x_{ii} = 1$$
 $(i=1,...,n)$

$$x_{ij} \geq 0$$
 $(i = 1, ..., n, j = 1, ..., n)$

LP Model

(the Coefficient Matrix is "Totally Unimodular")

Maximization Version of AP (Max-AP)

• Objective function (maximum "cost") $\max \quad \sum_{i=1,n} \sum_{i=1,n} c_{ii} x_{ii}$

One machine assigned to each job:

$$\sum_{i=1,n} x_{ij} = 1$$
 $(j=1,...,n)$

Resource utilized for each machine:

$$\sum_{j=1,n} x_{ij} = 1 \quad (i = 1, ..., n)$$

$$x_{ij} \geq 0 \quad (i = 1, ..., n, j = 1, ..., n)$$

Min-Max Version of AP (Bottleneck AP)

- Assume $c_{ij} \ge 0$ (i = 1, ..., n; j = 1, ..., n);
- Objective function (minimum cost of an assignment)

min
$$z = Max\{c_{ij} x_{ij} : i = 1, ..., n; j = 1, ..., n\}$$

$$\sum_{i=1,n} x_{ij} = 1 \qquad (j = 1, ..., n)$$

$$\sum_{j=1,n} x_{ij} = 1 \qquad (i = 1, ..., n)$$

$$x_{ij} \geq 0 \qquad (i = 1, ..., n, j = 1, ..., n)$$

min z

$$z \ge c_{ij} x_{ij}$$
 $(i = 1, ..., n; j = 1, ..., n)$

BLP Model

Min-Max Version of GAP (Bottleneck GAP)

- Assume $c_{ij} \ge 0$ (i = 1, ..., m; j = 1, ..., n);
- Objective function (minimum cost of an assignment)

min
$$z = Max\{c_{ij} x_{ij} : i = 1, ..., m; j = 1, ..., n\}$$

$$\sum_{i=1,m} x_{ij} = 1 \qquad (j = 1, ..., n)$$

$$\sum_{j=1,n} r_{ij} x_{ij} \le b_i \qquad (i = 1, ..., m)$$

$$x_{ij} \in \{0, 1\} \qquad (i = 1, ..., m, j = 1, ..., n)$$

min z
z
$$\geq c_{ij} x_{ij}$$
 ($i = 1, ..., m; j = 1, ..., n$)

BLP Model