Variant of KP0O1:
Multiple Choice KP (MCKP)

In addition to the input data for KPO1.:

the set of the n items Is partitioned into k disjoint
subsets Ny, No,..., V, .

« determine a subset of the n items, with at most one
item for each subset N, (h =1, ..., k), so as to maximize
the global profit, and such that the global weight is not
larger than the knapsack capacity C.



BLP Model for MCKP (2)

« determine a subset of the n items, with at most one
item for each subset N, (h =1, ..., k), so as to maximize
the global profit, and such that the global weight is not
larger than the knapsack capacity C.

max ijl,n Pj X;

ijl,n Wi x; < C

X x <1 (h=1,...,K)
J €Ny

XJ c {O, 1} (J — 1, coey n)

BLP Model MCKP I1s NP-Hard



BLP Model for MCKP (3)

* Define the Binary Matrix A,; (h=1,...,k; J=1,...,n),
with:

- Ap=1if jeN;
* Ay = 0 otherwise.
 Matrix Ay; belongs to the input data of the instance

max ijl,n Pj X;

ijl,n W x; < C

XAy X <1 (h=1,...,K)
x, € {0, 1} (j=1, ... 1)



Multiple Choice KP (MCKP) is NP-Hard

MCKP: in addition to the input data for KP01:

the set of the n items Is partitioned Into k disjoint subsets N,,
Nyyeery IV .

determine a subset of the n items, with at most one item for each
subset N;, (h=1, ..., k), so as to maximize the global profit, and
such that the global weight is not larger than the knapsack
capacity C.

Input: m, C, k, (P)), (W;) 1 =1,...,n), N, (h=1, ..., k)
Size: 3+2n +k*n (matrix Ap;), with k< n : n*n
Size: 3 +2n +n (partition of the set {1,2,...,n}) : n.

Binary Decision Tree: similar to the decision tree of KP-01:
n levels, 2 descendent nodes and constant time for each node:

MCKP e Class NP ;
MCKP is a “generalization” of KP-01 : KP-01 o« MCKP



BLP Model for MCKP
* Binary Matrix A, (h=1,...,k; J=1,...,n), with:
* Ay =11f Je N, ; A, = 0 otherwise.

max ijl’n Pj X;
Zj:m W x; < C

XAy X <1 (h=1, ..., k)
x; € {0, 1} (j=1,...,n)

The BLP Model has a number of binary variables x;
polynomial in the size of MCKP:

MCKP e Class NP



Multiple Knapsack Problem
(MKPO1)

Given: n items, m containers (knapsacks)
P; profit of item | (j=1,...,n)
W; weight of item | (j]=1,...,n)
C; capacity of container | (1=1,...,m)

Insert a subset of the n items in each container in order
to maximize the global profit of the items inserted in the
containers, and in such a way that the sum of the
welights of the items inserted in each container 1 (I = 1,
..., M) is not greater than the corresponding capacity C:

Each item can be inserted in at most one container.



MKPO1 (2)

Given: n items, m containers (knapsacks)

P; prc_)fit of it_em j_ ( j =1,...,n)
W; weight of item | (j=1,...,n)
C; capacity of container | (1=1,...,m)

Insert a subset of the n items in each container in order
to maximize the global profit of the items inserted in the
containers, and in such a way that the sum of the
welghts of the items inserted In each container 1 (1 = 1,
..., M) is not greater than the corresponding capacity C:

P, >0 (j_=1,...,n)
W; >0 (J=1,...,n)



MKPO1 (3)

Given: n items, m containers (knapsacks)

P; prc_)fit of it_em j_ ( j =1,...,n)
W; weight of item | (j=1,...,n)
C. capacity of container | (1=1,...,m)

P, >0 (j=1,..,n); W,>0 (j=1,...,n)

ijl,n W; > max{C;:1=1,...,m}

W; < max{Ci:1=1,....,m} (]J=1,...,n)

min{C;:1=1,...,m} 2 min{W;:j=1,...,n}



Mathematical Model of MKPO1

. = {1 if item | is inserted in container |
’ 0 otherwise (i=1,...,m; j=1,...,n)

max ijl,n P; (Zizl,m Xij)

X Wix; <C (i=1,...,m)

Xij E{O,l} (|=1, coeo m, J=1, coe n)

7777



MKPO1 1s NP-Hard

MKPO1: given: nitems, m containers (knapsacks),
P; profit of item j, W; weightof item j ( j=1, ..., n),

C, capacity of container i (i=1,...,m):
insert a subset of the n items in each of the m containers in order to maximize the global
profit of the inserted items, and in such a way that the global weight of the items inserted
in each containeri (i =1, ..., m) is not greater than the corresponding capacity C;

Input: n,m, (F;), (W;)(J=1,...,n),(C;)) (I=1,...,m)

e« Size: 2+2n+m: n+m, (m<n: Sizen)

» Decision Tree: n levels (one for each item j );
(m +1) descendent nodes (insert item j in knapsack 1, or 2, ..., or
m, or in no knapsack) and constant time for each node:

MKPO1 e Class NP ;
(BLP model with (m * n) binary variables x;;)

« MKPO1 is a “generalization” of KP-01 :
KP-01 « MCKP



Mathematical Model of MKPO1

X = {1 If item | Isinserted in container |
! 0 otherwise (i=1,...,m; j=1,...,n)

max ijl,n P; (Zizl,m Xii)
X Wix; <C (i=1,...,m)

z:i:1,m Xij <1 (J - 19 ceey n)

Xij E{O,l} (|= 9 soey m, J=1, coco n)
BLP Model
MKPO1 is NP-Hard



Generalized Assignment Problem
(GAP)

Given: m machines (persons) and n jobs (tasks):

C;; cost for assigning job j to machine 1 (i=1, ..., m;
1=1, ..., n);

r; amount of resource utilized for assigning job | to
machine | (I=1,...,m;]=1, ..., n), rj2 0;

b, amount of resource available for machine |
(i=1..,m), b >0.

Assign each job to a machine so as to minimize the
global cost, and in such a way that the global resource
utilized by each machine 1 Is not greater than the
corresponding available resource b,



Generalized Assignment Problem
(GAP)

Assign each job to a machine so as to minimize the
global cost, and in such a way that the global resource
utilized by each machine 1 Is not greater than the
corresponding available resource b;.

GAP i1s NP-Hard
The Feasibility Problem of GAP is NP-Hard

Decisional binary variables:

X; = 1 If job J is assigned to machine i;

X; = 0 otherwise; (=1 ..,.m;, |=1,...,n)



Mathematical Model of GAP

* Objective function (minimum cost)
MIN - Zioy i Zj=1n Cij Xj

* One machine assigned to each job:

S eim X = 1 (j=1,...,n)

e Resource utilized for each machine:
Zizn N Xj <D0 (i=1,...,m)

Xij S {O, 1} (|=1, coco m, J=1, coco n)

BLP Model



Maximization Version of
GAP (Max-GAP)

* Objective function (maximum “cost”)
MaX iy m2j=1n Cij Xj

* One machine assigned to each job:

S im X = 1 (j=1,...,n)

e Resource utilized for each machine:
Zizl,n rij Xij < bi (i=19 cocy m)

Xij S {O, 1} (|=1, coeo m, J=1, coe n)



GAP 1s NP-Hard

Given: m machines and n jobs:

c;; cost (r; amount of resource utilized) for assigning job j to machine I (i=1,
eom; =1, ..., n);

b, amount of resource available for machine i (i = 1, ..., m):

Assign each job to a machine so as to minimize the global cost, and in such a way
that the global resource utilized by each machine i is not greater than the
corresponding available resource b;.

Input: m, n, (¢ ), () (1=1, ..o m; J=1, ..., N);

(b;)) 1=1, ..., m)
Size: 2+2m*n+m: m*n

The Feasibility Problem of GAP (F-GAP) i1s NP-Hard.



Feasibility Problem of GAP (F-GAP)

Given: m machines and n jobs:

r;; amount of resource utilized for assigning job j to machine I (i=1, ..., m; =
1, ..., n);

b, amount of resource available for machine i (i = 1, ..., m):

Assign each job to a machine in such a way that the global resource
utilized by each machine 1 is not greater than the corresponding
available resource b;.

Input: m, n, (r; ) (=1, ..o, m; J=1,..,n); (b;) (1=1, ..., m):
Size: m*n
« Decision Tree: n levels (one for each job | );

* m descendent nodes (insert job j in machine 1, or 2, ..., or m )
and constant time for each node:

F-GAP e Class NP

Also GAP e Class NP (same Size and Decision Tree as F-GAP);
(BLP model with (m * n) binary variables x; )



Feasibility Problem of GAP (F-GAP)

Given: m machines and n jobs:

r; amount of resource utilized for assigning job j to machine 1 (i=1, ..., m; | =
1, ..., n);
b, amount of resource available for machine i (i =1, ..., m):

PP o F-GAP :
 Given any instance of PP: t, (g;), b (Size: 1)
1) Define (in time O(t)) an instance (m, n, (r; ), (b;) ) of F-GAP:
*n:=
*m:i=2; bi=b; b= X a-D
TrpEagy = (J=1,...,0)
2) Determine (if it exists) a feasible solution (x;; , X,;) of F-GAP.
3) If afeasible solution of F-GAP exists, then PP has a feasible
solution (X;; , Xy;)
Otherwise: PP has no feasible solution.
Computing time O(n) (hence O(t), polynomial in the size of PP).
* F-GAP i1s NP-Hard



Bin Packing Problem (BPP)

Given:

n items;

W; weightofitem)(j=1,...,n) (W; >0);
m  containers (bins), each with capacity C:

Insert all the n items in the containers in order to minimize the
number of used containers, and in such a way that the sum of
the weights of the items inserted in a container is not greater
than the capacity C.

W; <C J=1,..,n

2 W >C



Bin Packing Problem (BPP)

Glven:

n Iitems;

W; weightofitemj (] =1,...,n) (W; >0);
m containers (bins), each with capacity C:

Insert all the n 1tems in the containers in order to
minimize the number of used containers, and in such a
way that the sum of the weights of the items inserted Iin
a container is not greater than the capacity C.

BPP is NP-Hard
The Feasibility Problem of BPP is NP-Hard



Mathematical Model of BPP

. = {1 if item j is inserted in container |
) 0 otherwise (i=1,...,m; j=1,...,n)

(**)

y: = { 1 if container i is used
| 0 otherwise (i=1,...,m)



Mathematical Model of BPP (2)

min Zizl,m Yi

2, Wix; <C (i=1,...,m)
i X =1 j=1,...,n)
yi €{0, 1} i=1,...,m)
XIJ E{O, 1} (|=1, coeo m, J=1, coeo n)

7777



Bin Packing Problem (BPP) is NP-Hard

Given: n items; m bins (each with capacity C);

W, weight of item j (=1, ..., N):

Insert all the n items In the bins in order to minimize
the number of used bins, and in such a way that the

global weight of the items inserted in a bin is not
greater than the capacity C.

* Input:n,m, C, (W;)(J=1,...,n); Size: 3+n:n
*ms<n



Feasibility Problem of BPP (F-BPP)

Given: n items; m bins (each with capacity C);
W; weightof itemj (J=1, ..., n):
insert all the n items in the m bins in such a way that the global weight of the
items inserted in a bin is not greater than the capacity C.

F-BPP 1s NP-Hard
* Input:n,m,C, (W;)(J=1,...,n); Size: 3+n:n
* Decision Tree: n levels (one for each item j );

* m descendent nodes (insert item j in bin 1, or 2, ..., or m)
and constant time for each node (m<n):

F-BPP e Class NP ;
Also BPP e Class NP (same Size and Decision Tree as F-BPP);
(BLP model with (m * n + m) binary variables Xx;.,y;)



F-BBP 1s NP-Hard

Given: n items; m bins (each with capacity C);
W; weightofitem](j=1,...,n):
Insert all the n items in the m bins in such a way that the global weight of the
items Inserted in a bin is not greater than the capacity C.

e PP« F-BPP :
* Given any instance of PP: t, (a;), b (Size: )
1) Define (in time O(t)) an instance (n, (W;), m, C) of F-BPP:

*m:=
*Wii=g (J=1,...,n)
2) Determine (if it exists) a feasible solution (x) of F-BPP.

3) It afeasible solution (xy; , X,;) of F-BPP exists, then PP has a
feasible solution (x;; , X,;)

Otherwise: PP has no feasible solution.
Computing time O(n) (hence O(t), polynomial in the size of PP)



F-BPP Is a particular case of F-GAP

F-GAP: given: m machines and n jobs:

r; amount of resource utilized for assigning job j to machine I (i =
1, ...m; |=1,..., n);

b, amount of resource available for machinei (i=1, ..., m):

assign each job to a machine so that the global resource utilized by
each machine i is not greater than the available resource b;.

F-BPP: given: n items; m bins (each with capacity C);
W; weightofitemj(j=1,...,n):

Insert all the n items in the m bins so that the global weight of the
Items inserted in a bin is not greater than the capacity C.

Arising when:
i = Wj (1= .,m; j=1,..,n);
bi =D (i:]-, coey m)



Mathematical Model of BPP (2)

(M1) min 2:izl,m Yi

22 Wix; <C (i=1,...,m)
Ziim X =1 j=1,...,n)
Xij < yi (|= 1, coeo m, J — 1, cooy n)
y. €{0, 1} i=1,...,m)
X;; €10, 1} (1=1,....m; J=1,...,n)

BLP Model



Mathematical Model of BPP (2)

(M1) min 2:izl,m Yi

22 Wix; <C (i=1,...,m)
Ziim X =1 j=1,...,n)
Xij < yi (|= 1, coeo m, J — 1, cooy n)
y. €{0, 1} i=1,...,m)
X;; €10, 1} (1=1,....m; J=1,...,n)

(m+ n+ mn) constraints



Alternative Models of BPP

(M2) min Zizl,m Yi

2, Wi x; <C (i=1,...,m)
it X =1 (j=1,...,n)
ijl,n le < M yi (l — 1, coco m) M= n
y; €{0, 1} (iI=1,...,m)
X;; €10, 1} (1=1,....,m; j=1,...,n)

(2m+n) constraints



Alternative Models of BPP (2)

(M3)  min 2:izl,m Yi

X Wix; <Cy,  (i=1,...,m)

i X =1 j=1,...,n)
y. €{0, 1} i=1,...,m)
X;; €10, 1} (1=1,....,m; J=1,...,n)

(m+n) constraints



Alternative Models of BPP (3)

(M1)  Z,W;x; £C i=1,...,m)
Xij <Y, (1=1,....,m;]J=1,...,n)

(M2) ijl,n WJ le <C (l = 1, cooo m)
ijl,n XIJ <M yi (l — 1, cocy m) M >n

(MB) ijl,n WJ le <C yi (l — 1, coeq m)

« EXAMPLE: C =100, W,;=50, n=1000, ...
* “Linear Relaxation” of the variablesy; (0 < y; <1),
* Xp=1, y;=05 (X;=0, J=2,...,n):
(M2) and (M3): all constraints are satisfied
(M1) 1=1,)=1: constraint x; <vy; (1<0.5)Is notsatisfied



Linear Relaxation of Model (M1)

« Lower Bound LB on the value of the optimal solution of BPP:
LB=%_,,W;/C

(LB >1);

k= [LB]

* “Linear Relaxation” of the variables x; andy;:

0< x;=1, 0O<y <1

(i=1,.

., M; J=1,...,Nn).

Optimal solution of the Linear Relaxation of BPP (Model M1):

yi = 1/LB — C/Zj:]_’nwj (<1)

y
y

K =

h

X

J

-2 ka1 Y]
0

= Yi

1=1,..,k-1

0< y<y;<1)

(0<x;<1)

h=k+1,...m

1=1,....m; j=1,...,Nn



Linear Relaxation of Model (M1)

Optimal solution of the Linear Relaxation of BPP (Model M1):

y; = L/LB =C/Z W, (<1) i=1 ., k-1

Yo = 1- 2 1Y (0< y<y;<1)

y, = 0 h=Fk+1,..,m

Xii = Vi 0< y,<1) I=1,....m; j=1,...,Nn

Constraints:

Yo WiXx; <C - (1=1,...,m)
Zicin WY =2, W,/ LB=C (i=1,...,k-1);
Zi=tn Wi Vi < Zjopn Wiy, = G

ijl,n WJ yJ =0<C (|=k+1, coey m)



Linear Relaxation of Model (M1)

« Optimal solution of the Linear Relaxation of BPP (Model M1):

« yvi=1/LB :C/ijl,nWj (<1) =1 ..., k-1
* Yo = 1-2ig Y (0< y<y;<1)
* v, =0 h=k+1,...m
* X =Y 0< y,<1) I=1,....m; j=1,...,Nn
« Constraints:
* iz X = 1 U=1,...,n)
z:i:1,m yj =1 (j=19°°°9 n)
* Xijsyj (i=19 » M j=19 9n)

Xij =Y, i=1,...,m; j=1,...,n)



Linear Relaxation of Model (M1)

Optimal solution of the Linear Relaxation of BPP (Model M1):

« yvi=1/LB :C/ijl,nWj (<1) =1, ..., k-1

* Y = 1-Zig kY (0< y<y;<1)

° yh:O h=k+1,...,m

* X =Y 0<y,<1) I=1,....m; J=1,...,N

All the constraints are satisfied: feasible solution!

* Objective Function:

ML)  z= 2V,



Linear Relaxation of Model (M1)

« Optimal solution of the Linear Relaxation of BPP (Model M1):

« yvi=1/LB :C/ijl,nWj (<1) =1, ..., k-1

* Y = 1-Zig kY (0< y<y;<1)

° yh:O h=k+1,...,m

* X =Y 0<y,<1) I=1,....m; J=1,...,N

All the constraints are satisfied: feasible solution!

* Objective Function:

(M1) Z = Zizl,m y; = 1 (useless Lower Bound!)



Assignment Problem (AP)

Particular case of GAP:
m=n: n machines (persons) and n jobs (tasks):
c;; cost for assigning job j tomachine 1 (i=1, .., n; }
=1, ..., n);
r; = 1 amount of resource utilized for assigning job ]
to machine 1 (I1I=1,...,n;]=1, ..., n),

b, =1 amount of resource available for machine I
(1=1,...,n).

3
AP Is a Polynomial Problem solvable in O(n ) time.



Mathematical Model of GAP

* Objective function (minimum cost)
MIN - Zioy i Zj=1n Cij Xj

* One machine assigned to each job:

S eim X = 1 (j=1,...,n)

e Resource utilized for each machine:
Zizn N Xj <D0 (i=1,...,m)

Xij S {O, 1} (|=1, coco m, J=1, coco n)

BLP Model



Mathematical Model of AP

* Objective function (minimum cost)
MIN - Zioy =g n G X

* One machine assigned to each job:

S in X = 1 (j=1,...,n)

 Resource utilized for each machine:
ijl,n XIJ < 1 (|=1, coey Il)

Xij S {O, 1} (|=1, coco n, J=1, ceey n)

BLP Model



Mathematical Model of AP

* Objective function (minimum cost)
MIN - Zioy =g n G X

* One machine assigned to each job:
Zioin X5 = 1 (j=1,...,n)

 Resource utilized for each machine:

Xian X5 £ 10 2, x =1 (1=1,...,n)



Mathematical Model of AP

* Objective function (minimum cost)
MIN - Xioy  Zi=g G Xjj

* One machine assigned to each job:

Zign Xij = 1 (J=1,...,n)

 Resource utilized for each machine:

X X = 1 (1=1,...,n)
Xij = 0 (iI=1,...,n, J=1,...,Nn)
LP Model

(the Coefficient Matrix is “Totally Unimodular”)



Maximization Version of AP
(Max-AP)

* Objective function (maximum “cost”)
max iy Zj=1n Cij X;j

* One machine assigned to each job:
z:izl,n Xij =1 (j=19°°°9 n)

 Resource utilized for each machine:
. X = 1 (i=1,...,n)

J_ ’ IJ



Min-Max Version of AP (Bottleneck AP)

» Assume c; 2 0 i1=1..,n, |]=1,...,n);
* Objective function (minimum cost of an assignment)

min z = Max{(:ij Xij =1 ..,n, |]=1,...,n}
z:|:1,n Xij = 1 (j=19°"9 n)
Xign X = 1 (1=1,...,n)
Xij 2 0 i=1,...,n, J=1,...,Nn)
min z
Z 2 CjXj i=1..,n, |]=1,..., n

BLP Model



Min-Max Version of GAP (Bottleneck GAP)

« Assume c; 2 0 (I=1,...,m; J=1, .., n);
* Objective function (minimum cost of an assignment)

min z = Max{cij Xij : 1=1,...m;, |=1,..., n}
z:i:1,m Xij =1 (j=19°"9 n)
ijl,n I’U XIJ S bi (|=1, coey m)
X;; € {0, 1} i=1,....m, j=1,...,n)
min z
Z 2 Cj X (1=1...m;, |J=1,...,n)

BLP Model



