A Real-Time Conflict Solution Algorithm for the Train Rescheduling
Problem

This preprint is available at https://santini.in/

A final version of this preprint is published as follows:

Author 1: Andrea Bettinelli

Author 2: Alberto Santini

Author 3: Daniele Vigo

Journal: Transportation Research Part B: Methodological (vol. 106), pp. 237-265 (2017).

The final version is available at:
https://www.sciencedirect.com/science/article/pii/S0191261516301151

You can cite the final version of this paper as:

@article{Bettinelli2017,
title={A Real-Time Conflict Solution Algorithm for the Train Rescheduling Problem},
journal={Transportation Research Part B: Methodological},
author={Bettinelli, Andrea and Santini, Alberto and Vigo, Daniele},
volume={106},
pages={237-265},
doi={10.1016/j.trb.2017.10.005},
year={2017}


https://santini.in/
https://www.sciencedirect.com/science/article/pii/S0191261516301151

A Real-Time Conflict Solution Algorithm for the Train Rescheduling
Problem

Andrea Bettinelli', Alberto Santini?, and Daniele Vigo®

LOptit s.r.1., Ttaly*
2Universitat Pompeu Fabra, Spainf
3Universita di Bologna, Italy*

December 29, 2022

Abstract

We consider the real-time resolution of conflicts arising in real-world train management appli-
cations. In particular, given a nominal timetable for a set of trains and a set of modifications due
to delays or other resources unavailability, we are aiming at defining a set of actions which must be
implemented to grant safety, e.g., to avoid potential conflicts such as train collisions or headway vi-
olations, and restore quality by reducing the delays. To be compatible with real-time management,
the required actions must be determined in a few seconds, hence specialized fast heuristics must be
used.

We propose a fast and effective parallel algorithm that is based on an iterated greedy scheduling
of trains on a time-space network. The algorithm uses several sortings to define the initial train
dispatching rule and different shaking methods between iterations. The performance is further
enhanced by using various sparsification methods for the time-space network. The best algorithm
configuration is determined through extensive experiments, conducted on a set of instances derived
from real-world networks and instances from the literature. The resulting heuristic proved able
to consistently resolve the existing conflicts and obtaining excellent solution quality within just
two seconds of computing time on a standard personal computer, for instances involving up to 151
trains and two hours of planning time horizon.

1 Introduction

Modern railways represent a major form of transport with an ever-growing user base, as trains
are flexible in terms of travelling distance (they can be used for local, regional and long-distance
services) and capacity (as they are modular by nature). Furthermore, train transportation is usually
the greenest transportation options for both goods and people.

Despite this, railways are confronted with the increase of operational costs and a fierce com-
petition from other modes of transport. Many users demand more reliability in train operations:
a long delay, a cancelled train, a missed connection can easily decrease the perceived quality of
service and turn away potential customers.

Most of the events that negatively affect train operations (broadly called conflicts) happen when,
for some reason, there is a difference between the nominal and the actual service. The causes of such
events are usually divided into disturbances and disruptions (Cacchiani et al. [5]). The former are
small perturbations of the system that are handled by network operators by momentarily changing
the timetable. The results of disturbances are usually minor, such as one or more delayed trains,
or a platform change at a station. Disruptions, on the other hand, are major incidents that not
only alter the nominal timetable, but also require changes in rolling stock and crews. The outcome
of a disruption could include major delays, train cancellations, and long reroutings. Disturbances
clearly happen much more often than disruptions and their impact is not to be underestimated: a
train that is delayed just a few minutes can make a user miss an important connection and increase

*andrea.bettinelli@Qoptit.it
falberto.santini@upf.edu
fdaniele.vigo@unibo.it



their travel time by hours. In this paper we consider both disturbances and disruptions in a unified
way, by defining an algorithmics approach to handle the conflicts they cause.

Increasing systemwide reliability is crucial at every phase of the planning process. It starts at
the strategic and tactical levels (budget allocation for maintenance, timetable robustness, etc.), but
once at the operational level, it is almost impossible to avoid that day-to-day activities be disturbed
by many kinds of unforeseen events.

When such an event occurs, it is the job of the dispatcher to restore the system in a working
state. The job of dispatchers has been traditionally done by hand, based exclusively on their
experience and practice. It was not until recent years that computer algorithms were developed
with the aim of aiding the dispatchers in making the best decision that resolves the critical situation
and minimises deviances from the nominal timetable.

In this paper we present such an algorithm, developed to solve the Train Rescheduling Problem
(TRP): given a nominal timetable which has become infeasible because of one or more conflicts
that have arisen, we are asked to produce a new conflict-free timetable that is as close as possible
to the nominal one. Or, in case it is not possible to produce a conflict-free timetable, we need to
warn the dispatcher about this and provide a timetable with the least possible number of conflicts.

Conflicts are all those situations that either can’t physically happen (e.g., two trains occupying
the same segment of track at the same time) or that can potentially compromise the safety of
operations in the network (e.g., two trains running too close to each other in the same direction).

The algorithm presented in this paper is the result of a long lasting collaboration with Alstom,
initiated by the company in 2012 with the aim of redesigning the optimisation algorithms incor-
porated in its Train Management System ICONIS. To this end, Alstom involved three important
Italian research groups in specific research projects investigating various optimisation problems
arising in the real time conflict resolution. As a result of such initial wide research effort, the team
formed by Optit, an accredited spinoff of the University of Bologna, and the Department of Electri-
cal, Electronic and Information Engineering of the University of Bologna, was selected to produce
an innovative real-time conflict solution algorithm capable of taking into account the characteristics
and constraints of practical applications which has been developed and industrialised during 2013,
and extensively tested by Alstom in real-world contexts. Recently, the new algorithm has been
fully integrated in ICONIS and will be deployed at various international Alstom customers.

The paper is structured as follows. In the next section we give an overview of how a railway
system works, how it can be affected by disturbances and what it means to reschedule a train. In
Section 3 we review the existing literature on the TRP, based on the classification schema given
by Cacchiani et al. [5]. In Section 4 we give a mathematical description of a railway network, of
train timetables and of the relationship between them. We present an heuristic algorithm for the
solution of the TRP in Section 5. We then describe the instances used and provide computational
results in Section 6. Finally, we draw conclusions and propose further research paths in Section 7.

2 Timetables and conflicts

Nominal timetables are the crucial part of any railway systems. They describe in detail the trip of
each train, from its departure to its arrival station, including all the intermediate stations where
the train stops or passes by. This includes not only those parts of the trip where the train operates
passenger service, but also all the movements necessary to perform service and maintenance, e.g.,
rolling stock relocation, cleaning, technical service.

Every arrival and departure is scheduled at specific time slots, which are calculated in advance
by taking into account physical properties (e.g., track curvature and gradient, maximum allowed
speed, train length) and interaction among trains. Clearly two trains can’t occupy the same portion
of tracks at the same time, but other constraints usually have to be respected. For example trains
have to respect headway times, i.e., a minimum amount of time must be left as a buffer between
trains travelling in the same direction. Another example are dwell times at platforms, which are
needed to board and alight passengers.

Timetables can be periodic or aperiodic. Periodic timetables repeat themselves at certain time
intervals (e.g., every second hour and every hour during peak times). Although such timetables
are usually appreciated by customers, as they are easy to memorise and use, they are difficult
to implement in a competitive market where many train operators are likely to request access
to the same resources at the same time. For this reason, trains are often scheduled in aperiodic
timetables. The name aperiodic is slightly misleading, since these timetables are repeated day after
day so, strictly speaking, they have a period of one day.

Timetables are implemented by assigning tasks to rolling stock and crews. When it comes to



passenger transportation, rolling stock are usually composed of one or more locomotives and many
passenger cars; or, in case of multiple unit (MU) trains (MU trains are those composed by one or
more similar self-propelled train cars), by one or more MUs. A crew includes a train driver and one
or more train guards. Finally, a task represents a complete trip of the rolling stock and the crew
from the train origin to its destination. The set of tasks carried out by rolling stock and crews in
a day is called a shift, or duty.

Since in most countries the railway infrastructure is operated by a different actor than the
trains, the timetables are usually created and managed by an infrastructure manager, who tries to
accommodate the requests of train operators as much as possible, while abiding to safety rules and
other operational constraints. Once the timetables are set up, train operators will assign rolling
stock and crews to the corresponding tasks.

During real-life operations a train can easily deviate from its nominal timetable: extra time
might be needed at a station to board and alight passengers, weather conditions might force the
driver to slow down in certain parts of the route, etc. These are examples of primary delays. A
delayed train, in fact, could interfere with the operations of other trains, in turn delaying them
(secondary delays) and many delays can end up knocking on from one train to another.

As already mentioned in Section 1, in this work we consider disturbances and disruptions (in-
troduced in Section 1) under a unified umbrella. A detailed list of the conflicts we consider is
given in Section 4.3. The corrective actions that our algorithm will suggest are limited to retiming,
respeeding, and rerouting trains, collectively named rescheduling. Retiming consists in changing the
durations of train stops at stations. Respeeding changes the times trains enter and leave different
parts of the network (i.e., changing their speed). Finally, rerouting consists in assigning a train a
new path in the network.

Several criteria can be considered when rescheduling a set of trains. For example, we may want
to minimise the deviance from the nominal timetable, or the total delay, or the number of broken
connections, etc. In our work, we present a general way of modelling events in the network, that is
able to take into account all of these criteria (and many more).

3 Literature Review

Conflict resolution in train applications, often known as the train dispatching problem (see, e.g.,
Meng and Zhou [33]), is widely studied in the literature, and research contributions can be classified
in several ways.

A first possible subdivision may take into account the level of detail used in modelling the
physical resources composing the train network. In this respect, the main distinction was usually
between microscopic and macroscopic modelling approaches. A microscopic approach would repre-
sent every element of the rail infrastructure in detail (individual tracks, platforms, etc.). In such a
model every network element can be assigned to only one train at a time, thus leading to explicit
capacity requirements on the resources. A typical macroscopic model, on the other hand, would
disregard any fine-grained segmentation of the tracks, thus leading to cumulative capacity require-
ments, since each network element could represent several physical resources. In the literature,
such models are also known, respectively, as single-track and N -track models (see, e.g., Tornquist
and Persson [45]). This distinction, however, is often blurry, and several authors adopted a mixed
approach, by considering so-called mesoscopic models, in which the modelling detail is not specified
a priori. Here, network elements can represent either low level infrastructure, such as specific tracks
or platforms, or aggregate one, such as entire stations or N-track segments.

Another widely used subdivision takes into account the type of conflict resolution actions avail-
able to the decision makers. These include the application of retiming, reordering, retracking, and
rerouting of trains (Meng and Zhou [33]). Such actions involve, respectively: the adjustment of
speeds and stopping times; modifying the order in which trains occupy platforms or track segments;
small and large changes in the path followed by trains in the network.

In their recent survey, Cacchiani et al. [5] also adopted a classification scheme which mainly
takes into account the type of conflict to be managed by the model. More precisely, the authors
distinguished between disturbances and disruptions and analysed the literature classifying models
and solution approaches based on this viewpoint. The reader is also referred to Meng and Zhou [33],
Tornquist and Persson [45] for additional literature analyses and classification. Other classification
schemes proposed in recent surveys mainly focus on the solution methodology adopted (see Fang
et al. [21]) or on dynamic and stochastic components related to on-line rescheduling (see Corman
and Meng [9]). Finally, we direct the interested reader to the recent book of Hansen and Pachl
[22] for a comprehensive analysis of many aspects of railway timetabling and operations, including



train rescheduling.

Many works which employ a more microscopic approach revolve around the concept of alter-
native graph, introduced by Mascis and Pacciarelli [31] for the no-wait job shop scheduling. The
problem of assigning a train to a track segment for a certain period of time, in fact, can be seen
as a job shop scheduling problem where track segment are machines and the assignment of a train
to a segment is an operation. Additional constraints, such as set-up times and no-wait constraints,
are used to model specific characteristics of the problem. The alternative graph formulation was
widely used to develop solution approaches to various rescheduling problems (see, e.g., D’Ariano
et al. [17]) such as the ROMA tool (see, e.g., Corman et al. [10, 11, 12, 13, 14], D’Ariano and
Pranzo [16], D’Ariano et al. [18, 19]). Corman et al. [15] integrates fast heuristics for this model,
which provide a primal solution, with a network-flow relaxation, providing a dual bound.

Other approaches, which use alternative solution paradigms, have also been explored. Rodriguez
[36] solved conflicts using constraint programming techniques and using the job shop model with
additional constraints. Meng and Zhou [32] propose a stochastic programming model is used to
reschedule trains on a single-track line, so that the new schedule is robust. Pellegrini et al. [35]
solve a real-time traffic management problem using a pure Mixed-Integer Programming (MIP)
model which represents a small section of a railway network with fine granularity. Sama et al. [39]
use an ant-colony optimisation metaheuristic to select the best routing alternative for each train
in a real-time setting. A simulation-based approach for train dispatching was proposed by Li et al.
[30]. Mu and Dessouky [34] employs fuzzy optimisation techniques to reschedule trains after a
low-probability disruption occurs. Finally,

Several authors tried to bridge the gap between fine-grained and more aggregate representations
by using different techniques. For example, Lamorgese and Mannino [28, 29] propose an iterative
macro- and microscopic approach, in which the line traffic control problem takes care of the macro-
scopic constraints (trains meeting at stations, stations’ capacities respected) and acts as a master
problem. The station traffic control considers instead detailed constraints at the station level and
acts as a subproblem to generate cuts for the master problem, in a way analogous to Benders
decomposition. Other mesoscopic approaches have been based on MIP formulations: Toérnquist
and Persson [46] used an exact model for rescheduling on N-track networks; Térnquist [44] used
a MIP-based greedy heuristic starting from the same model; this model was further extended by
Acuna-Agost et al. [1], who also consider intermediate stops and bidirectional tracks.

While minimising the total delay is a sensible choice, in recent years the focus of reschedul-
ing techniques has been shifting towards a more passenger-oriented point of view, which aims to
minimise the travellers’ delay. In this spirit, Schobel [42] solved the delay management problem,
consisting in deciding which connections between trains should be maintained, even when this
would mean to introduce some delay on certain trains that would have to wait for others. The
work has been expanded in Dollevoet et al. [20], Schachtebeck and Schébel [41], Schébel [43], while
Kanai et al. [27] propose a combined optimisation/simulation algorithm that allows to track addi-
tional performance indicators other than total passenger delay. On the other hand, concering the
scheduling of freight trains, Mu and Dessouky [34] recently proposed effective heuristic approaches
based on decomposition.

4 Problem description

Given a description of the current state of the network, the goal of our algorithm is to produce a
new timetable for the trains, keeping in mind what was the original, nominal timetable published
to the users. There are, therefore, three main objects that we need to model to provide input
data to the algorithm: the first is a description of the physical network; the second is the nominal
timetable, the third is the current status of the trains in the network (called the forecast timetable).

4.1 Network and timetables

The main tool we use to represent the train network is the network (di)graph Gx = (V, A). Nodes
in V represent resources. What a resource is can vary greatly and depends mostly on the level of
detail we want to achieve when modelling the train network. At a microscopic level, a resource
could be a single section of track between two signals, a platform at a station, a junction between
tracks, etc. On a macroscopic level, it could be a whole station, or a set of parallel tracks between
two stations, etc.

There are, of course, trade-offs between macroscopic and microscopic representations. While
the latter will produce a larger graph, using the former will lead us to lose some information. For



Q
Il
2o

&)
(2
O

connecting tracks

- platforms -

(b) Microscopic representation of the same station as in Figure la, with all platforms and physical tracks modelled
explicitly.

Figure 1: Differences between the micro- and macroscopic representations of a station. ) represents
the capacity of a resource.

example, when we represent a set of parallel tracks as a single resource, we can’t guarantee that a
feasible assignment of trains to the tracks always exists.

Talking about resources rather than more specific railway elements, however, allows us to gen-
eralise many aspects of railway networks and even to mix micro- and macroscopic representations
in the same graph. This is useful, for example, when the central part of the network is particularly
congested and needs a higher level of detail, while peripheral parts are less loaded and can be
modelled at a lower resolution.

For example, Figure 1la shows a macroscopic modelling of a station S and two set of tracks L
and R. Figure 1b shows the same station and tracks at a microscopic level: the station has been
substituted by three platforms and the generic set of tracks have been replaced by a node for each
physical track. Furthermore, connecting tracks have been introduced, to model the connections
between the platforms and the tracks. Notice that a solution that was feasible in Figure 1a might
not be feasible in Figure 1b. For example, a train leaving P; to reach R, and a train leaving P5 to
reach Ry can’t depart at the same time, as they would violate the capacity of Sra (which is 1), but
we wouldn’t have been able to rule out this solution just by looking at Figure 1la and the capacities
of the aggregate nodes.

We identified certain properties that apply to all resources, no matter what parts of the physical
network they represent:

e Every node v € V has an ideal (or soft) capacity Q, € N and a hard capacity Q, € N.
The capacity of a resource indicates the number of trains that can occupy it at the same
time. While the soft capacity can be violated (by possibly paying a certain penalty) the hard
capacity cannot be violated under any circumstances. The relation @, < @, holds.

o Every node v € V also has an associated boolean parameter, w, € {0,1}, that indicates
whether overtaking and crossing between trains can happen at the node.

The arcs in set A represent the possibility for trains to move from one node to another. Arcs
also have capacities, indicating the number of trains that can simultaneously transit from the source
to the destination node of the arc: we indicate the capacity of a € A with @, € N. This quantity
is considered as a hard capacity.

The other main actors of a train network are, naturally, trains. Let I be the set of trains and
consider the following properties that link together resources and trains:

e Given a train ¢ € I and a resource v € V, we give the minimum and maximum travel times,

i.e., the minimum and maximum times that ¢ is allowed to occupy v. We denote these values



with m; , and M; , respectively. The physical meaning of these quantities can vary depending
on what the resource models. In case of a section of track, m; , is given by the length of the
track and the maximum speed that the train can achieve on that track. On the other hand,
in case of a platform, m; , is the dwelling time.

e Given a resource v € V, we denote with h, the minimum headway at v, i.e., the time that

must elapse between two trains occupying the resource.

The nominal timetable describes the ideal operational status of the network. Each train i €
has a predefined path in the network, denoted as p; = (v1,va, ..., vg, ), which is simply a sequence
of resources to be visited: vy,...,v,, € V.

For each node in the path of train ¢, the nominal timetable also provides the times at which the
train is supposed to enter and leave the node. These times are denoted as GE’UJ_ and 9;";5 respectively.

The current train plan describes the network as it is at the present moment — and as it is
forecast to be in the future, given the information available. For this reason, such a plan is also
called the forecast timetable. In an ideal scenario, the forecast timetable is always equal to the
nominal one. In practice, when a disturbance or a disruption occurs, the forecast diverges from the
nominal timetable.

The forecast timetable has a formal structure which is similar to that of the nominal timetable:
it gives a sequence of nodes that each train must visit, together with the expected in- and out-times.
Since both timetables describe the (ideal and real, respectively) situation of the network before the
dispatcher takes any decision regarding rerouting, the train paths must be the same in both.

The only new parameters associated with the forecast are, therefore, the in- and out-times. To
account for the uncertainty that comes with the real-time situation of the network, we actually give
pairs of minimum and maximum possible in- and out-times. These values should be considered as
hard values, i.e., the train cannot possibly enter a node before the minimum in-time or after the
maximum in-time.

The minimum in- and out-times are denoted, respectively, as ti?vj and t‘;_"j,_ti, for j =1,... k.
The maximum in- and out-times are Tl”}) and Tlogf

As we mentioned in Section 2, rescheduling a train can involve rerouting it. This means that
the dispatcher is allowed to change the path of the train in the network. In our model, we assume
that it is only possible to choose detours from a predefined set available for each train. The set of
detours associated with train ¢ is D;.

A detour is nothing more than a path in the network, so an element d € D; contains a sequence
of nodes: d = (v1,v2,...,v;). We only require that both the first and the last node of the detour are
also part of the original train path p;. Furthermore, similarly to what we have seen for the current
train plan, maximum and minimum in- and out-times are given for each node v; of the detour.
These are denoted as tg’d’vj (minimum in-time), Tii’r(’i’vj (maximum in-time), ?,l:it,uj (minimum out-
time), and 11332}], (maximum out-time).

4.2 Time-space graph

The network graph Gn = (V, A) introduced in Section 4.1 does not explicitly model the time
component. In this subsection, we present a time-space graph and we construct it starting from
Gn and augmenting the number of nodes to take into account time and entry/exit points of nodes of
V. Time-expanded graphs have already been used to model railway networks, e.g., in Caprara et al.
[7] and Cacchiani et al. [4]. The time-space (di)graph of a train i € I is denoted as Girg = (Vig, Alrg)
and is obtained in the following way.

For every entry and exit point of every node v € V, a node is added to Vig. The definition of
entry and exit point is strongly dependent on the physical resource modelled by v. For example, if
v represents a set of parallel tracks, there will be one entry and one exit point for each track; if v
models a station, there would be an entry and one exit point for every track running through the
station. In general, the number of entry and exit point does not need to match (e.g., a station could
have more tracks one side than the other). The names entry and ezit are only used to distinguish
two physical locations on the resource, but since trains can generally run on a resource in both
directions, a specific train could actually enter the resource from one of its exit points and leave it
from one of the entry points.

We then need to model time into the graph. In order to do this, we first have to decide a
reasonable time horizon and a time discretisation. In practical applications, these values could
be provided to the model by the upstream conflict detection system. Notice, though, that the
flexibility bundled with our model allows us to use different time discretisations in different parts of
the time-space graph: some resources or some time intervals can be modelled with a more precise



time

wy o o o o o o o o
V1

wh o o 0 0 0 o o o

w% o o o O
(%)

w2R‘ o o o o

Figure 2: Example of a portion of time expanded graph.

time discretisation than others. For example, it is possible to have a denser time discretisation for
peak times and a sparser one for low-congestion times (e.g., at night). A denser discretisation might
also be necessary for short tracks, where the travelling time could be shorter than the standard
time interval. Once the time discretisation and the time horizon have been fixed, each node gets
one further copy per time instant.

Finally, two dummy nodes o! . and O’;nk are added to each graph Gl.g. They represent, respec-
tively, a source and sink node used as the start and end point of the train’s path in the graph.

Arcs are created between pairs of nodes (wq,ws) € V{;S and they are divided in three types.
The first type links nodes which represent entry and exit point relative to the same resource v € V.
Such an arc would model the travelling of a train along the resource modelled by v, when the
difference in time instants represents a feasible travelling time for train .

The second type links nodes which represent entry and exit points of adjacent resources, that is
of nodes v1,v2 € V such that (vy,v2) € A. Such an arc would model a train that leaves a resource
and (instantaneously) reaches a new one.

Finally, the third type links the source and the sink to the other nodes. Let w! and w! be the
entry points that train ¢ has to use to access and leave, respectively, its start and end resources.
We then add to the arc set ALg a: (a) arcs from o?,, to nodes of the form (w?,t), where ¢ is a time
instant; (b) arcs from nodes of the form (wf,t) to o’ ,, where ¢ is a time instant; (c) arcs from
nodes of the form (w,T) to of ,, where w is any entry or exit point, and 7T is the last time instant
of the time horizon, used to represent a train that could not reach its destination within the time
horizon considered. ' _ _

We list the three type of arcs separately and let A%y = A’Té U Affé U Aff%, where the three sets
contain, respectively, arcs of the three types listed above.

Figure 2 shows a portion of a time-expanded graph. Nodes w} and w! are the left and right
extreme points of v; € V, while nodes w¥ and w¥ are the left and right extreme points of vy € V.
The arcs between w} and w! represent the traversal of resource v; and, analogously, the arcs
between w) and wit represent the traversal of resource vy. Different arcs having the same source
node model the different travelling times associated to different speeds. The vertical arcs between
wi and w} represent the possibility of moving from v; to v.

The arcs in Ales can be mapped back to the resources and the time intervals they represent in
the following way. For each arc a € AiT’é, let p(a) € V be the underlying resource modelled by the
arc; analogously, let p(a) € V' x {—1,+1} be the directed underlying resource, used to distinguish
the direction in which the resource is being traversed; let I(a) be the length of the associated
resource p(a). Let also As(a) and Ac(a) be the start and end time of arc a, i.e. the times when the
train (respectively) occupies and frees the resource.



time

wr,

WR

Figure 3: Train i; overtaking train ¢o on resource v. Notice how this situation corresponds to crossing
arcs in the time-space graph.

4.3 Constraints

As defined in Section 1, conflicts are those situations that either can’t physically happen or that
would compromise the safety of operations, and their resolution plays the same role as satisfying a
constraint in a Mixed Integer Programme (MIP). In order to give a more precise description of the
contraints presented in the rest of this section, we give some mathematical formulation in which
we use the notation 2, € {0, 1} as a variable in a Mixed Integer Programme, having value 1 iff the
arc a € Al is part of the path of train i.

Preliminary experiments with solving a compact MIP formulation of real-life instances with a
commercial solver have shown that model generation alone can take several minutes, and solving
the root node requires more than a day. For this reason, we do not include a complete MIP model
for the problem we are presenting. Rather, the notation z? should be seen as a way to describe
precisely the constraints taken into account by our algorithm, and how they are reflected on the
time-space graph.

Notice, first of all, that a train schedule can be modelled as a path in Gig, starting in o?, and
ending in ¢’ , and abiding to the usual flow conservation constraint. Formally, this means that:

Z i =1 (1)

a€ARd (od.)

Z zi =1 (2)

aeAzfs_ (0l

Z xfz = Z xfz Vw € V’Il‘S \ {O—;rmo—;nk} (3)

aEAfF’S_(w) aEAfF'g'(w)

where AzT'S"(w) (resp. Ang (w)) is the set of all arcs outgoing from (resp. incoming to) node w € Vig.

In this work we deal with the rescheduling of the trains once the conflicts have already been
detected and reported, so we will assume that the complete list of conflicts is available together
with the current train plan. In other words, the conflict detection system works upstream of our
system. This assumption is not restrictive, as a simple linear-time algorithm over the current train
plan is able to produce the complete list of conflicts.

The presence of conflicts could be formally detected by checking for violations in (hard) con-
straints involving the variables 2. As we will see in Section 4.4, we want to penalise the violation
of certain soft constraints. In a MIP model, for example, a hard capacity limit can be enforced
via a constraint, whereas the extent of the violation of a soft capacity limit can be penalised, by
introducing an auxiliary variable that plays the role of the slack variable relative to the constraint.

4.3.1 Illegal crossing and overtake

An illegal crossing (overtake) describes a situation when a train would cross (overtake) with another
one, on a resource v where this is illegal, i.e. w, = 0. An example of overtaking is described in
Figure 3.

An overtake corresponds to the violation of the following constraints: for each train ¢, each



resource v where overtaking is forbidden, and each arc a € Afré such that p(a) = v:

Z Z a4+ al <1 (4)

i€l aeat

I pah=pla),
As(a’)>As(a),
Ae(@)<hela)

Constraint (4) states that train j overtakes train ¢ on resource v if j arrives in v after ¢, but leaves
v before i, and both trains travel in the same direction.
Analogously, corresponds to the violation of the following contraints: for each train i, each

resource v on which crossing is forbidden, and each arc a € AL such that p(a) = v:

o> al4ai <1 (5)

JEL  a’e Aty

I p(a")=p(a),
Bla)#p(a),
Ae(a)>As(a’)

Constraint (5) states that train j crosses train ¢ on resource v if j arrives in v before i has left, and
the two trains travel in opposite directions.

4.3.2 Capacity violation

A capacity violation occurs when the number of trains simultaneously occupying a resource is
greater of the hard capacity of the resource. Such a conflict corresponds to a violated inequality of

the following type:
YD w<Q, (6)
i€l qeAlg
p(a)=v,
As(a)<t,

for each resource v and each time instant ¢, where we remind that @, is the hard capacity of
resource v.

4.3.3 Headway violation

Such a conflict occurs when a train occupies a resource that has been occupied by another train,
and not enough time has elapsed between the first train leaving the resource and the second one
entering it. For each train ¢ € I and each arc a € AZTé corresponding to a resource p(a) on which
crossing and overtaking is forbidden (w,() = 0, as otherwise the headway must not be respected),
a headway conflict corresponds to a violated constraint:

> > o, +al <1 (7)

jeI leAdl
i N
pla’)=p(a)
Ae(a')>As(a)—hy(q)
As(@)<he(@)+hp(a)

4.3.4 Time dependencies

Avoiding the conflicts described in the previous subsection is usually enough to come up with a
new plan that allows safe operations and limits the deviations from the nominal timetable. Unfor-
tunately, this is not always enough to provide a holistic, good solution.

Consider, for example, a passenger on a delayed train that risks missing his connection. From
his point of view, a solution that also delays his next train (to “wait for him”) is preferable to a
solution that does not. But from a train operator’s point of view, a solution that does not delay
the second train may be considered better, since no delay is better than some delay.

Then, if the train operator’s service intention is, for example, “moving passengers from A to B”
(even at the cost of increasing the overall delay, to some extent), this should be taken into account
by the rescheduling algorithm.

In order to take into account service intentions, we introduce the concept of time dependencies
(Caimi et al. [6]). A time dependency is a relationship of precedence between two events happening
in the network. For example, a time dependency could mandate that the event “train i; leaves



time
Arrival of i

w% . o o o o o o o
Resolution time
w2 o o o
v
Departure of iq
wllz{ o o o ) Q . o o
w2R o [e] o o o o [e]

Figure 4: Resolution time of a time dependency between the arrival of train i and the departure of
train 77 at a station.

node v” can only happen a certain time after the event “train i arrives at node v”; intuitively, we
would say that train i; needs to wait for train io at node v.

A service intention can merely suggest a precedence between events, as in the case of passenger
connections: it is preferable that the connection is kept, but this “promise” can be broken in order
to improve the overall quality of service. On the other hand, the precedence can also be mandatory,
as in the case of two trains that share crew or rolling stock.

Let F be the set of time dependencies. We associate to each element f € F' the following values:

e The two trains is1,7y2 involved in the dependency.

o The two resources vy 1,vf,2 at which the linked events need to take place, respectively.

o Two parameters e 1,72 € {0,1} that take value 0 if the corresponding event is an arrival or

value 1 if it is a departure.

o A parameter 7y € {0, 1} that takes value 1 iff the dependency is mandatory.

e The minimum and maximum resolution time, ¢y and ®;. The dependency is considered

satisfied if the two events take place at least ¢y and at most ®; time units apart.

 For non-mandatory (also called logical) time dependencies, we give a maximum waiting time

wy. The dependency must be satisfied if it is possible to do so by introducing at most wy
time units of delay. If this cannot be done, the dependency can either be satisfied or not. For
example, in the case of a connection between two trains, we might require that a train waits
for the other at most wy time units. If the required wait is greater, the train can decide to
break the connection.

Figure 4 shows an example in which train i; stays at station v for three time intervals after
the arrival of train is, presumably to wait for passengers travelling on is. The resources wk, wit
represent entry and exit points of two platform at the station (k = 1,2).

The violation of a mandatory time dependency f € F' can be detected as follows. Assume wlog
that the event relative to train iy ; needs to take place before the event relative to train iy 5. For

k=1,2anda€ Aflfé’“’l such that p(a) = vy, consider the parameter:

s (a) - /\S(a) if €f7k; =1
PR 7 N Aela) ifepe =0

We can then formulate the corresponding constraint:

pr< Y whbpala) = Y aidrala) < @ (8)

ip ool ip 1,1
ac A acAf?
pla)=vy,2 pla)=vs1

10



4.3.5 Split and merge

Similar to time dependencies are split and merge operations. These are events in which the trains
that enter a node are not the same that leave it. They model real-life operations such as decoupling
some cars from a train, so that they can get a new locomotive and proceed to a different destination.

In the most general version, any number of trains can enter a certain node and any number of
trains can leave it, so a split/merge is identified by a node v € V' and two sets of trains I;,Io C I
that represent in-trains and out-trains. The out-trains can leave the node only after a certain
amount of time has passed since the last in-train reached it. This time accounts, in practice, for
the time necessary to perform any physical coupling and decoupling, or to change crew or rolling
stock. Special cases of split/merge operations are:

e Split, when one train enters the node, and two or more exit it.

e Merge, when more than one train enter the node, and only one exits it.

e Rename, when one train enters the node and one train exits it.

In case of split/merge events, the node’s capacity is not considered, as it is assumed that it is
always feasible for the event to take place in the node specified. Finally, note that these events are
mandatory: for example, it is not possible that a train will be detoured around a node in which it
has to undergo a split.

In the following we show how a split or merge operation can be modelled in terms of mandatory
time dependencies; in this way, the conflict resulting from a missed split or merge can be detected
by checking for the violation of the corresponding time dependency constraint. For example, if train
7 needs to be split into trains 4’,¢” at resource v, then said resource will be set as the destination
of ¢ and the origin of i’ and i”. Furthermore, two dependencies will be created:

o [ € F links trains ¢ and ¢’ and has: iy =i,ip 0 =15 0p 1 =vpo=0v;ep1=0,ep 9 =1;
Ny = 1; ¢ will be the time needed to perform the split operation; ® will be the maximum
time allowed for the split to take place, if any.

e f"” € F, analogously links trains 7 and ¢".

4.3.6 Maximum and minimum entry, exit, and travel times

Maximum and minimum entry, exit, and travel times can be enforced by removing from the graphs
G’ those nodes that would correspond to an infeasible (resource, time) couple. For example, if
a train ¢ € I cannot enter resource v before time ¢, all nodes of Vi corresponding to resource v
at a time ¢’ < t can be removed from the graph. Analogously, if the minimum travel time along a
resource v is t, all arcs a € A4 such that Ao(a) — As(a) < t can be removed.

4.4 Objective function

The objective value can be written as a function of the paths in the time-space graphs, and therefore
of Z = (x2,), in the following way:

f(@) = [u(@) + f2(F) + f3(Z) + fa(T) 9)

The four components correspond to delays, logical dependency breaking, soft capacity violations,
and the use of detours. Each of these components represents a sum of penalties that quantify
how undesirable it is to incur in the corresponding violations. The penalty, therefore, is not only
limited to represent the economical disadvantage of taking a particular decision (e.g., increased
energy consumption) but can also represent intangible values, such as customer satisfaction. In the
following, we analyse these four components.

4.4.1 Delays

In the nominal timetable, we associated to each train i and each resource v; in the train’s path,
an ideal in-time 0%3_ and an ideal out-time Qf‘g Any deviation from these times can be penalised,
by considering two piecewise-linear functions that respectively assign a cost to delays in arriving
at and departing from the resource. These penalty functions are denoted as 7r;“vdj (-) and W?%Ed()
Notice that this general definition allows us to assign different penalty profiles to ditferent
resources: for example, if some resource is considered critical for a train, we can assign a higher
penalty to delays at that resource. The function can also operate on negative delays, allowing us to
penalise trains that arrive at a node with excessive advance. Finally, further flexibility is bundled
in the piecewise-linear nature of the function: for example, we might want to have a penalty that

grows linearly with the delay up to a certain point, after which a big flat penalty is assigned, as

11



Cost

Figure 5: Example of a penalty profile for the arrival of a train at a certain resource, with a “jump” in
cost if the delay is greater than 4 time units.

any further delay does not worsen the situation any more. This could be achieved with a penalty
profile such as that in Figure 5.

4.4.2 Dependency breaking

As we mentioned in Section 4.3.4, logical dependencies are not mandatory and therefore we can
decide to break them. In our implementation, when such a dependency f € F' is broken, we pay
a penalty w?ep. (Notice that, in principle, a piecewise linear function could be used, as done for

delays.)

4.4.3 Capacity violations

When we violate the soft capacity ), of a resource v, we pay a penalty 7;*P. In our implementation,
this penalty remains the same no matter how big the capacity violation is. (Notice that, in principle,
a piecewise linear function could be used in this case too.)

4.4.4 Detours

Finally, a fixed penalty WSEt is paid when a train ¢ is re-routed along a detour d € D,;. This

penalty takes into account all the costs (economical or otherwise) incurred because of the rerouting.
Dependency breaking and capacity violations are calculated separately when a detour is taken. If
some node of the detour can be naturally mapped to nodes of the original path, the delay penalty
can also be calculated. For example, if the detour consists of a platform change at a station, we
can naturally assign to the new platform the in- and out-times at the old platform.

The penalty 7rget should be considered as a fixed cost incurred by the mere fact of having rerouted
the train. It can include both real and virtual costs. For example, if the detour consist of a path
longer than the original one, there would be increased energy costs. But if the detour also excludes
a station, there would be a much increased passenger dissatisfaction. Therefore, the magnitude of
the penalty depends on the type of detour: a platform change will have a small associated penalty,
while a major change in the train’s path will be associated with a bigger penalty.

4.4.5 Other terms

Even though in the present work we only consider the four components discussed above, further
terms can be easily introduced in the objective function to take into account other indicators. For
example:

o Number of modifications with respect to the nominal timetable, eventually weighted differently
depending on the nodes or trains involved. This could be done to make sure that the new
timetable does not disrupt too much the current operations (i.e., changes too many train
paths) just to save a few seconds of overall delay.

e Increased travel time on resources, eventually involving a piecewise-linear penalty profile. This
term would help avoiding unnecessary stops or excessive brake-accelerate cycles, for increased
passenger comfort and reduced energy consumption.

12



5 Solution Algorithm

A solution to the TRP is a collection of paths, one for each train, in the time-space graph Grs.
The solution algorithm must be able to modify the forecast timetable in order to solve the conflicts,
and to compute the new objective function. Key requirements for this algorithm, deriving from its
real-time nature, are:

o It must produce solutions of high quality in very short computational times (a few seconds).
This is due to the fact that the algorithm is used on-line by dispatcher, who needs reasonable
advice in few seconds, to guarantee the safety of operations in the network. For this reason,
we focussed on a heuristic approach.

e If the algorithm is not able to find a conflict-free schedule, it has to give the dispatcher a
schedule with the smallest possible number of remaining conflicts. This means that solving
more conflicts needs to always have priority over other factors. In order to accomplish this,
we established an implicit hierarchy through our objective function. A very high penalty
is assigned to each unresolved conflict, so that a solution with fewer conflicts will always
prevail on one which has more, while the “standard” objective function is used to decide
the best one between two solutions with the same number of remaining conflicts. Therefore,

the objective function presented in (9) is used as a part of the overall objective function:
f(f) = P - Nrc(%) + f(&), where P is the large penalty to pay for each conflict, and Ngc
gives the number of remaining conflicts in the solution.

e The algorithm should allow for a high degree of parallelisation, allowing to concurrently
produce multiple rescheduled timetables that will be stored in a solution pool, from which
the best one will be selected. This allows the algorithm to employ and evaluate different
strategies in situations where none of them is clearly superior to the others, thereby focussing
on different key aspects of the problem.

With these requirements in mind, we now give a general description of the algorithm which
boradly falls into the category of iterated greedy algorithms (see, e.g., Ruiz and Stiitzle [38]). After
an initialisation phase in which trains are ranked according to some criterion, the algorithm iterates
among two main phases, until a termination condition is met. The two phases are:

1. Construction: a new timetable is obtained by rescheduling the trains one by one, according
to their ranking.

2. Shaking: the train ranking is perturbed following a set of rules.

In our case the termination criterion is a hard time limit, with early termination if the solutions
didn’t improve over a certain number of iterations. The next subsections will describe each phase
in detail. Furthermore, in order to speed up the computational time of the construction phase, we
employed a sparsification of the graph Grg. This is a technique used to remove some edges and
vertices from the time-space graph. Its use is justified by the fact that, by choosing a fine time
discretisation, we might create a great number of edges, many of which can be removed without
strongly impacting the quality of the train plans.

Notice that, for the algorithm initialisation, for the shaking phase, and for sparsification we
propose several possible alternatives. Therefore, an instance of our algorithm is completely defined
once we specify which initial sorting, shaking policy, and sparsification method is used. An extensive
experimental testing of the proposed alternatives, described in Section 6.1, will help determining
well-performing combinations of the algorithm’s components.

5.1 Initial sorting

Since the algorithm constructs a schedule for one train at a time (Step 1), the order in which the
trains are considered is clearly important, as trains scheduled later will be constrained by those
scheduled earlier. Since there is no “natural” order of trains, we used various sorting criteria:

o Random: the trains are randomly sorted.

e Congestion: the trains are sorted according to the number of conflicts in their forecast
timetable, putting trains with more conflicts first. The rationale behind this choice is that a
train that generates a lot of conflicts is harder to schedule, and therefore should be scheduled
earler. Using the notation introduced earlier, if £* is the assignment of variables corresponding
with the forecast timetable, then we sort the trains by decreasing value of N}, (Z*), where

(%) is the number of conflicts in train i’s schedule, and Nrc(2*) = 3, o) N (7¥).

e Length: the trains are sorted according to the number of nodes in their original path in
decreasing order. The longer the path, in fact, the higher the chances that a conflict will be
present at some node. The trains are therefore sorted in decreasing order of the size of their
set {a € A* : 7 =1}.

13



(o2 )—(=)
Figure 6: Topological order between nodes (resources) of a simple network.

e Conflict time: the trains are sorted according to the time instant of the earliest conflict
in their forecast timetable. This is because an early conflict can impact the overall network
status at a much later time. In other words, there is more freedom when fixing conflicts
happening earlier, and we want to fully use this freedom.

e Speed: the trains with highest average speed are scheduled earlier. This strategy is based on
the observation that faster trains have schedules that are more sensitive to variations. The
average speed of a train 7 is given by:

Yacae o1 M@K
[{a € Alg : Ac(a) > As(a) and % =1}

During a preliminary experimental phase, we noticed that using the sorting criteria in reverse order
can sometimes lead to better results. For this reason we also considered the criteria Reverse
congestion and Reverse speed.

5.2 Construction

Each train schedule is constructed by solving a shortest-path problem on the time-expanded graph
Grs, where the starting node correspons to the current position of the train and the ending node
corresponds to the train’s desired position at the end of the time horizon.

Since trains run along fixed routes, with only a few possible detours, and since they have hard
constraints on the time at which they can reach and leave certain resources, the graph Grg can be
pruned accordingly for each train. Once this is done, the shortest path is constructed with a custom
label-setting algorithm. Given a partial path to a certain node (w,t) € Vg, the corresponding label
will be L = ((w',t'), ¢) where the node (w',t') € Virg is the predecessor of (w,t) in the partial path
and ¢ € R is the cost of the partial path up to the current node.

Notice that, since trains are scheduled sequentially and the algorith is ran on a different time-
space graph for each train, we cannot run into deadlocks. A deadlock will indeed correspond to
an unresolved conflict (usually a capacity violation) and be accordingly heavily penalised in the
objective function.

We discuss now two main aspects of this algorithm: the order in which we extend the labels and
how we update the cost component. Labels are extended greedily, i.e., starting from the one with
the lowest cost component, but with one exception: a label related to a resource w will be extended
only after all the labels related to resources w’ < w have already been extended (independently
from the time interval), even if they have a higher cost. The relation < is the topological order
relation between nodes in the subgraph of Gy induced by the union of the path of the train p;
and all the detours in D;. To better understand this rule, consider Figure 6, which describes the
topological setup of a network with a main corridor and a possible detour (via F' and G). Labels
related to resource D, for example, will be extended only after all labels related to resources A, B,
C, F and G have been extended, since A< B<C <Dand A< F <G =< D.

The cost component is updated taking into account the various penalties included in the objec-
tive function. Some of these penalties, however, depend on the interaction between different trains.
As an example, consider a connection between trains iy and is. If 1 is scheduled before i, when
we schedule i; will just assume that the connection will be satisfied. If, when scheduling i, we
realise that the connection is broken, we will add the penalty on the objective function of is.

Finally, we need to take special care in case of split/merge operations, as these require the
presence of multiple trains on the same resource at the same time. When the partial path of an
input train reaches one of these resources, we fix the schedule of the train up to that point, by
choosing the lowest cost partial path (we first explore all non-dominated partial paths up to the

14



synchronisation point). We proceed with the construction of the schedule for the output trains,
only once all the schedules of the input trains have been fixed up to the considered resource.

5.3 Shaking

In the shaking phase we perturb the ordering of the trains (the dispatching sequence) with the aim
of finding an ordering which leads, through a new construction phase, to an improving solution.
We present two alternative policies, inspired to two well-known metaheuristic algorithms: Reduced
Variable Neighbourhood Search (RVNS) and Tabu Search (TS). As mentioned in the beginning of
this section, these two alternative policies are experimentally evaluated in Section 6.

The RVNS (see, for example, Hansen et al. [23]) explores the solution space of the problem by
employing a sequence of neighbourhood structures N, ..., Nk. A neighbourhood structure defines
a way to describe the neighbourhood of any solution x in the solution space.

Starting from a solution z, RVNS generates a new random solution ' € Np(z). If the new
solution is not better than the previous one, it goes on to the second neighbourhood structure and
generates a random x’ € Ny(z). The procedure continues until either we run out of neighbourhood
structures or the new solution z’ is better than the current one x. In the first case, the algorithm
terminates; in the second case, the algorithm is restarted using =’ as initial solution and going back
to using M.

The neighbourhood structures are typically such that

NM(z) CNy(z) C ... C Nk(2) (10)

for all solutions x. This means that while no improving solution is found, the search space around
x is enlarged.

In our case, the neighbourhood structure Ny (z) consist in considering all dispatching orders
that can be obtained from x by performing at most k& swaps. From this definition, it follows
immediately that (10) is satisfied. The trains to be moved in the new dispatching order are selected
at random with a roulette wheel selection procedure where the probability associated to each train
is proportional to its contribution to the objective value. The number of positions each train is
moved up is again chosen at random, according to a uniform distribution in [fmin, fmax]-

The second policy is inspired to Tabu Search. Starting from a dispatching sequence, we produce
a new one analogously to what done with the RVNS policy. We will place in our tabu list the
precedence relations between the moved trains. For example, if we transform the sequence z =
(A,B,C,D) into 2’ = (A, D, B, (), we will store the precedence relations (D, B) and (D, C). While
these are in the tabu list, the relative order of trains D, B and D, C will not be inverted. If, at the
next iteration, train B will be selected to be moved up, then train D will have to move together
with B, so not to invert the relation (D, B); the new dispatching sequence will then be (D, B, A, C).

The number of iterations each precedence move is stored in the tabu list depends on three
factors:

1. The change in the part of the objective function relative to the moved train;
2. The change in the overall objective function;
3. Whether the new solution improved the incumbent solution.

5.4 Sparsification

As previously mentioned, the sparsification of the graph Grg is used to remove some edges and
vertices from the time-space graph, to speed up the computation of shortest paths by the labelling
algorithm. Its use is justified by the fact that, by choosing a fine time discretisation, we might
create a great number of edges, many of which can be removed without strongly impacting the
quality of the train plans.

As an example, consider a segment of track 5km long and a train that, at full speed, would
travel on this segment at 100km/h. The running time of this train will be of 3 minutes. If we
choose time intervals to represent 1 second, that would be 180 time instants. If the entry point is
w"™ and the exit point is w®, when we consider an entry time of ¢, we would create all the arcs

("), (w®, £ +180)) , ((w", ) , (i, ¢ +181)), ((w",¢) , (w®, ¢ +182)) , ..

up to the end of the time horizon. This level of accuracy is clearly not needed in this situation:
a train that took 181 time instants rather than 180 to travel along that segment, would go at a
speed of 99.45km /h which is indistinguishable from 100km/h for any practical purpose. So, even
if removing some edge from the graph would — in principle — cause the algorithm to miss some

15



feasible train plan, if these edges are properly selected, we can easily reduce the probability to miss
a train plan that would produce a considerable improvement.

Here we propose four main strategies for graph sparsification. Let v be a node in the network, 4
the train under consideration and m;, the minimum travel time of 7 along v. Furthermore, let ¢ be
the entry time of the train at the node and ¢’ the first feasible exit time, taking into account both
the minimum travel time and the other constraints such as the minimum and maximum out-times
tout and TPy'. The strategies we used are the following:

Fixed step We only consider departure times starting at ¢ and then keeping a time instant in
every s. The set of possible departure times will be

{+k-s| k=0,1,...}

Fixed step with threshold The previous strategy can be improved by specifying a threshold 7
and keeping all departure times between #' and ¢’ + 7. In this way we keep those arcs that
are close to ¢’ and therefore correspond to a minimal delay of the train.

Linear This case is similar to the fixed step sparsification, but the step s is adjusted to be inversely
proportional to m; ,. The set of possible departure times is

{t'—ﬁ—k'max(Lmi’v) ‘ k:O,l,...}
S

Progressive With this strategy we allow a higher density for time instants close to t’, while we
retain fewer arcs as long as we move away from that time instant. The idea behind this
criterion is that good train plans are characterised by train schedules that are delayed as little
as possible. The set of possible departure times is {¢} } where ¢; = ¢’ and

t;€71 —t
ty =11 +1+ {SJ
In our testing we used s € {2,3,5} and 7 € {5,10,15}, leading to a total of 19 combinations,
including the case when sparsification is disabled. Figures 7a to 7d give a graphical representation
of the sparsification methods for a segment v with endpoints wl and w} and a minimum travel
time m; ., = 2.

6 Computational Results

The aim of computational results presented in this section is to verify that the proposed approach
is valid for complex instances coming from real-life applications, that describe an extended network
with many trains, and an extended time horizon with a dense discretisation. We also want to
validate that our algorithm achieves good results in real-time settings, where running times are
limited to few seconds.

To this end, we have initially considered 23 instances, generated from three different real-world
railway networks, provided to us by Alstom Transport. The first set of instances (NO1-N13) de-
scribes a relatively small network chatacterised by the presence of single track lines used in both
directions. The second set of six instances (L01-L06) refers to a busy regional network with a large
main station and several smaller stations. Finally, the third set includes four instances (P01-P04)
describing a high-speed network with frequent long-distance trains.

Table 1 outlines the main characteristics of the instances considered. Column “# Trains” lists
the number of trains present in the instance; “# Nodes” is the number of resources, i.e., the
cardinality of the set V in the network graph Gn (before time expansion); “Time horizon” is
the span, in hours, of the planning horizon; “Discretisation” is the time discretisation step used,
expressed in seconds; “# Conflicts” is the sum of the number of conflicts (as described in Section 4.3:
illegal overtaking, hard capacity violation, headway time violation) plus the number of violated
mandatory time dependencies, given as input in the current train plan.

In Section 6.1 we perform parameter tuning, to determine which graph sparsification methods
and initial sortings are more likely to produce good solutions when used together with each policy
(RVNS or Tabu) and time limit (2s or 10s). In Section 6.2 we run a simple parallel version of the
algorithm on the 23 instances, using the tuned parameters.

In order to validate and benchmark our approach, we also generated new instances, which we are
making publicly available. We used the network topology of the 2012 RAS Competition instances
(see INFORMS Railways Applications Section [24]), in two configurations: in the first (letter “N”),
each segment is modelled as a separate resource, giving an N-track scenario; in the second (letter

16



(d) Progressive sparsification.

Figure 7: Graphical representation of various graph sparsification techniques on the time-space graph.

17



Name # Trains # Nodes Time horizon (h) Discretisation (s) # Conflicts

NO1 28 108 2 15 24
NO02 16 167 2 15 15
NO03 28 172 2 15 36
N04 17 112 2 15 4
NO05 18 112 2 15 12
N06 17 112 2 15 2
NO7 28 126 2 15 12
NO8 30 132 2 15 )
NO09 28 130 2 15 4
N10 30 135 2 15 3
N11 15 137 1 15 1
N12 20 153 1 15 2
N13 33 135 4 15 37
Lo1 139 664 1 15 20
L02 103 631 0.75 15 54
LO03 131 666 1 15 62
Lo4 132 675 1 15 25
L05 151 673 1.25 15 97
L06 133 671 1 15 38
P01 25 859 1 10 22
P02 55 814 1 10 22
P03 61 742 1 10 72
P04 71 731 1 10 70

Table 1: Main characteristics of the instances provided by Alstom.

“S”) parallel tracks are not modelled separately, but as a single resource with the appropriate
capacity, giving a single-track scenario. We generated 15 instances of each type, divided in groups
of 3. The nominal timetable is the same for each group, while the disturbances change, so to have
5 different forecast timetables for each nominal one. Because the RAS network is smaller than the
networks used in the instances of Table 1, in order to obtain feasible nominal timetables we had to
either use fewer trains (instances of the first group), or a longer time horizon with a more coarse
discretisation (instances of the second and third groups). These instances are available at [40].

To ease the comparison with other algorithms that might be developped in the future, we did not
consider problem-specific features such as time dependencies, and splits and merges. The conflicts
that can arise, therefore, are limited to headway, hard and soft capacity, crossing, and overtake
violations. Soft violations are penalised with a simple linear function. Table 2 describes the features
of the generated instances; columns “H”, “O”, and “C” give a detailed breakdown of the type of
conflicts: headways, overtake, and hard capacity, respectively. In Section 6.2 we apply the tuned
parallel algorithm to the new instances, similarly to what we do for the proprietary instances.

The tests presented in this section have been run on a dual-core 3.2GHz Intel i5 machine, with
7803MB of RAM. The CPU configuration and the L1, L2 and L3 cache sizes are detailed in Figure 8,
as produced by the software Hwloc (Broquedis et al. [3]).

6.1 Parameter tuning

The objective of parameter tuning is to measure the impact of the sparsification methods and the
sorting criteria introduced in Section 5, on real-time applications of the algorithm.

We ran six sets of experiments overall, in order to determine which combinations of sparsification
and sorting are particularly effective with the RVNS and Tabu policies. For each of these two
policies, the three sets of experiments only vary in the hard time limit given to the algorithm. The
first two time limits are of 2 and 10 seconds (real-time); the third time limit is of 60 seconds, and
is used to provide better solutions that can be used as a baseline for comparisons.

For each set of experiments, the tests were run on all the 23 Alstom instances. For each instance,
we tried all combinations of sparsification methods and initial sortings, using the parameters de-

18



# Conflicts
Name # Trains Time horizon (h) Discretisation (s) H O C

N-1-1 7 4 15 0 0 6
N-1-2 7 4 15 63 0 43
N-1-3 7 4 15 35 2 41
N-1-4 7 4 15 35 1 42
N-1-5 7 4 15 0 0 32
N-2-1 12 12 60 2 0 3
N-2-2 12 12 60 4 0 6
N-2-3 12 12 60 2 0 4
N-2-4 12 12 60 o o0 7
N-2-5 12 12 60 6 0 13
N-3-1 24 12 60 4 0 25
N-3-2 24 12 60 105 0 53
N-3-3 24 12 60 0 0 6
N-3-4 24 12 60 103 0 &9
N-3-5 24 12 60 0 0 10
S-1-1 7 4 15 0o 0 3
S-1-2 7 4 15 32 0 22
S-1-3 7 4 15 4 1 28
S-1-4 7 4 15 30 1 24
S-1-5 7 4 15 2 0 19
S-2-1 12 12 60 0 0 2
S-2-2 12 12 60 2 0 2
S-2-3 12 12 60 6 0 5
S-2-4 12 12 60 0 0 4
S-2-5 12 12 60 2 0 4
S-3-1 24 12 60 0 0 21
S-3-2 24 12 60 59 0 25
S-3-3 24 12 60 0 0 4
S-3-4 24 12 60 60 0 60
S-3-5 24 12 60 2 0 12

Table 2: Main characteristics of the instances generated starting from the 2012 RAS Competition
instances.

19



Machine (7803ME)

Socket P#0
L2 (409EKE)
L2 (256KEB) L2 (256KE)
L1(22KE) L1 (22KE)
Core P&0 Core P&2
FU P&D PUP&#2
PU P#1 PU P#3

Figure 8: Schematic hardware configuration of the test machine.

scribed in Section 5. In total, we had 19 possible settings for the sparsification methods and 7
possible sortings, giving 133 tests for each policy, time limit and instance, giving a grand total of
1332323 = 18354 runs.

Table 3 and Table 4 show the results we obtained during parameter tuning for the two solvers,
with time limits 2 and 10 seconds. In the first table the results have been aggregated by sparsifica-
tion method, while in the second, they have been aggregated by sorting criterion.

Columns “Sparsification” (in Table 3) or “Sorting” (in Table 4) tell, respectively, for which
sparsification method or sorting criterion the data is being aggregated. For each line the data are
grouped in four blocks, corresponding to the four combinations of policy (Tabu or RVNS) and time
limit (2s or 10s). Column “CF” gives the fraction of tests for which the algorithm was able to find
a conflict-free schedule. Column “Dev” is the average deviation, calculated as (z — 2*)/z* where
z is the solution value obtained by the algorithm with the specified configuration, and z* is the
best known solution value. This best known value comes from the 60 seconds runs that we use as
baseline, and is the best value across all possible parameter combinations. Since, as explained in
Section 5, the objective function has a hierarchical structure and unresolved conflicts take a very
large penalty, the values in this column tend to be quite large, as one single instance for which
a method was not able to produce a conflict-free schedule can increase the average considerably.
This is, however, a good metric of the desirability of a method, because solving conflicts always
has priority on any other measure of solution quality. In column “CF Dev”, we similarly report the
average deviation, but this time we only consider the conflict-free solutions in the average.

We want to select the best sparsification method for each policy (RVNS or Tabu) and each time
limit (2s or 10s). In order to do this, it is not sufficient to take the policy with the lowest deviation,
but one has to ensure that the differences in deviation are statistically relevant.

For this reason, we ran a Wilcoxon signed-rank test on each pair of sparsification methods, to
measure whether their deviations across the various instances come from the same distribution or
not (in this latter case, a difference in the average deviation is statistically relevant).

Figure 9 and Figure 10 give a graphical representation of the outcomes of the Wilcoxon test.
Each figure gives a representation of a directed graph. Sparsification methods are represented as
nodes. An arc is drawn between two nodes if the p-value of the Wilcoxon test relative to two
sparsifications is < 0.05; the arc goes from the node with the better average deviation to that
with the worse one. The colour and the thickness of the arc depend on the difference between
the deviations: the greater the difference, the thicker and bluer the arc; on the other hand, small
differences are represented by thin red-ish arcs. In particular, notice that the thickness and colour
of the arc are not related with the p-value, which is used only as a threshold to decide whether to
create the arc.

To simplify the visualisation, nodes and arcs are drawn from top to bottom, so that the best
sparsifications are in the top part of the graph. Furthemore, in order to reduce the number of arcs

20



‘poyewr uorpeoyisreds Aq pojeseIsse s)nsar Suruny Iojeuered ¢ 9[qe],

9e'1 68°00F 6.0 69°€ 69'¢cS 6.0 LTT 029 180 8G'T GroSLT 690  GI-G-P[oyseIyy
ve'T PT0LE 6.0 L9°€ L9°68¢  6L0 VTl Tv'e6 180 991 PE'8OLT  0L°0  0T-G-P[ouseIyy
ve'T 9980 6.0 €£9°€ 8€°0S¢  6L0 TTT 17°€6 180 67T 80°€E€T  €L°0  G-G-P[ouseIyy
9e'1 9T0LE  6L0 S6L P8OET  6L0 TET STL8T 080 0TF €9CPLT  89°0  CT-g-P[ouseIyy
9¢'1 68°00F 6,0 662 786y 8L0 6T CTLVE 080 €971 CCLZ9T  69°0  OT-E-P[ouseIyy
9€'1 ST0LE 080 €62 1089¢ 6.0 ST PILVE 080 @91 L6728V 0L0  Gg-plouseayy
8e'T LT0LE 080 <6L PTO0F 080 LGT 9T'0TE  6L0 FET T€LCTF 99°0  CT-g-Ployseyy
8€'T €r6ee 6.0 G089 ETCVY  8L0 LTI CTLVE  6L0 STV 16TG8E 290 0I-g-Ployseayy
8€'T 9T'0LE 080 S6L €100V 080 921 ¥6'L1c 080 6TF 6V'LL6E  99°0  G-g-P[oUseIyy
81 €6'6L8  8L0 LGT L7'€99  8L0  €GT 1279 780 05T 9€'6€7T €40  g-oarsserSoxd
veT 6T,V 080 G9'T LTE6V 080 €CT 9929 180 TPT 9L8VET €40  g-oarsseiSoxd
ve'1 99'80¢ 080 TG'T €9°069  8L0 VTl £6'1¢ 780 67T G67E8 9.0  g-oarsseaSoxd
A GG0LE 080 608 VO'IS6T  8L°0  €F'T ov6eL  LLO  C6'T LV'GTeIT 290 g-reouy
971 VZ0Le 080 0T0T 7966¢  6L0 6ET L98TF 8.0 90%¢ 70'STL8 90 g-reou|
o1 €00LE 080 9001 80°LLE 080 9ET I76ee 080 GS'T PSI6€9 990 g-reour|
0r'1 999079z GL'0  6C°T 070288  TL'0 GE'T 98'T2eST  8L0  T9'T TEGLRST  FLO ¢-poxy
a1 LT'8TSST  9L°0 79T 76'980ST L0 FET 98°ZIEST  8L°0 99T G6'TOTOT  TL0 ¢-poxy
8€'T 96'8GSCT  GL'0  €LT TYTISCT  GL0  GE'T TYTLEST  LLO 89T greeedr 040 G-poxy
€T gooLe 080 TE0T er'ssy  6L0 €8T 066  8L'0 SS'T 7921601 790 poTqesIp
Ae@ AD  A°d D A AD Aed D @ dD 4ed D Aed D  4Aed dD  uonpeoyisiedg
SOT SNAM sg SNAY SOT NqeL sg nqeL,

21



"SUILIOS [RIJIUL A PojeS8aI83r S)[Nsal SuIun) Iojomreied : 9[qR],

€e'T vL'vecee T80 VLV 6¢'6cce ¢80 I€'T EV'T98¢ 6.0  0L'T 90°60TV 89°0 paadg
ge'lr €9'Tv8C  LL0  GL'T L2°068¢ LLO 9C'T 69°¥8G¢ 6.0 191 09°01T¥ 99°0 poads as1oang
LE'T ¥6'96LE€  8L'0 LL'T 69'878€  8L0 6C'T 20°6849¢  8L'0 ¢TL'T G9°0L1¢9 7.0  UOI}SAFU0D 98104
v'1 16°€c9¢  8L'0 LT6 G6°c8YSG 9.0 VE'T 88°LE9C 180 10T L8'TE0ET 6970 wopuey
4! ¢I'TeLe  8L0 GL'T 80°'C88E 8L0 LT'T 67°GE9C 080 ¥9'1 GL'C0EE €L°0 qiSue]
1€°1 16°00L¢ 8L°0 VI'6 €8°CI0F 8.0 8C'T G6'68¢¢ 080 ¢C6F 99'8€6. €L°0 auwil) J2IguUoy)
'l Ly6vee 080 8E'TI IP'GEGE 640 6C'T 86'609¢ 080 8G'T 19°L61€ €L°0 uor1se8u0))
A0d 4D  4A8d 4D A 4D  aed 40 A 4D ARd 40 A 4D 4Aed CF) Suryrog
SOT SNAY S SNAY SOT nqeL, S¢ nqeL,

22



Copons s>

threshold-3-15
\
disabled

1d-5-15

disabled

threshold-2-10

(a) Policy: Tabu, time limit: 2s.

(b) Policy: RVNS, time limit: 2s.

Figure 9: Visual representation of the results of the Wilcoxon test (time limit: 2s).

23



progressive-5

progressive-3

progressive-2

(a) Policy: Tabu, time limit: 10s.

RVNS, time limit: 10s.

(b) Policy:

time limit: 10s).

(

Figure 10: Visual representation of the results of the Wilcoxon test

24



Tabu 2s Tabu 10s RVNS 2s RVNS 10s

progressive-2 progressive-2 linear-2 progressive-3

Deviation Deviation Deviation Deviation
Sorting Avg Std  Best Avg Std Best Avg Std  Best Avg Std Best
Congestion 441.45 2115.65 8 0.16 0.22 12 11.83 53.76 6 0.36 0.83 8
Conflict time 430.66 2063.77 2 0.22 0.30 2 442.05 2062.05 6 430.57 2063.81 5
Length 1076.20 5159.38 4 0.24 0.38 2 861.38 4127.40 2 215.53 1031.94 1
Random 2461.98 9855.31 3 0.22 0.31 2 22790 1030.85 1 430.60 2063.80 3
Rev. Congestion  226.44 1083.85 3 0.14 0.16 2 646.11 3095.51 3 430.59 2063.73 1
Rev. Speed 554.88 1887.01 1 0.19 0.33 2 431.11 2063.69 3 21547 1032.00 1
Speed 646.03 3095.86 2 215.37 1031.95 3 1215 53.70 2 0.23 0.42 4

Table 5: Average deviations of different sortings, for the chosen sparsification methods.

Tabu 2s Tabu 10s RVNS 2s RVNS 10s
progressive-2 progressive-2 linear-2 progressive-3
Congestion Congestion Congestion Congestion
Length Conflict Time Conflict Time Conflict Time
Reverse Congestion Reverse Congestion Reverse Congestion  Speed
Random Reverse Speed Reverse Speed Random

Table 6: List of sorting criteria chosen for each policy and time limit, to be used in the parallel algorithm.

drawn in the figure, whenever there are arcs (M7, Ms), (Ma, M3) and (M7, M3), this latter arc is
removed. In other terms, if a method M; dominates method Ms, and My dominates Mj, it is
implicit that M; dominates M3.

The sparisification methods were chosen as follows:

 In the case of policy Tabu and time limit 2s (Figure 9a) the only two undominated methods
are “progressive-2” and “progressive-3”; since the average deviation of the former is 38.1%
smaller than that of the latter (see Table 3), we decided to take “progressive-2” as the chosen
sparsification method.

e For policy RVNS and time limit 2s, the only undominated method is “linear-2”, which also
has a considerably smaller deviation compared to the other methods.

o An interesting case is that of policy Tabu and time limit 10s (Figure 10a), as this is the case
where it is most unclear which sparsification emerges as a winner. However, since the deviation
of method “progressive-2” is the smallest, and it is 49.04% smaller than the second-smallest
one (“progressive-3”), we chose this method.

« Finally, for policy RVNS and time limit 10s, the three undominated methods were “progressive-
27, “progressive-3”, and “threshold-5-5”. Again, since the average deviation for “progressive-3”
is 19.92% smaller than that for the other two (which have the same deviation), we chose that
method.

Table 5 shows the chosen sparsification methods and gives the average deviations (columns
“Avg”), together with their standard deviation (column “Std”), obtained by employing the different
initial sortings with each sparsification. Column “Best” tells the number of instances (out of 23)
for which each sorting criterion provided the best result, compared to the other criteria in the same
column.

6.2 Parallel algorithm

In this section we provide computational results for a very simple parallel implementation of the
algorithm. We ran four sets of experiments, namely one for each combination of policy and time
limit, together with the respective sparsification method chosen during parameter tuning, as de-
scribed in Section 6.1. For each set, the parallel implementation simply consists of launching four
parallel instances of the algorithm, each using one of four sorting criteria. When the time limit hits,
the four solutions provided by the parallel instances are examined and the best one is returned as
the overall solution.

The usage of parallel algorithms in operational research is well-established. We refer the reader

25



Instance group Algorithm Sorting Dev Conflicts Infeasible Modified Delay
L Tabu 2s Random, Length, Reverse congestion  0.17 0.50 0.00 104.50 28.64
L Tabu 10s Reverse congestion 0.11 0.50 0.00 104.67 29.00
L RVNS 2s Reverse speed 0.17 0.50 0.00 105.67 33.34
L RVNS 10s Conflict time 0.05 0.50 0.00 100.83 10.64
N Tabu 2s Congestion 0.16 0.38 0.08 7.85 79.43
N Tabu 10s Congestion 0.08 0.38 0.08 8.23 70.12
N RVNS 2s Congestion 0.45 0.38 0.08 7.54 99.30
N RVNS 10s Congestion 0.26 0.38 0.08 8.00 67.69
P Tabu 2s Reverse congestion 0.50 0.00 0.00 59.25  247.17
P Tabu 10s Reverse speed 0.03 0.00 0.00 59.50  220.52
P RVNS 2s Conflict time 0.30 0.00 0.00 59.50  226.83
P RVNS 10s Congestion 0.20 0.00 0.00 59.50 221.58
Overall 2s Congestion 0.29 0.35 0.04 42.09 99.81
Overall 10s Congestion 0.14 0.35 0.04 41.74 82.56
Overall Tabu Congestion 0.15 0.35 0.04 42.15 90.45
Overall RVNS Congestion 0.27 0.35 0.04 41.67 91.92
Overall Congestion 0.21 0.35 0.04 41.91 91.19

Table 7: Parallel algorithm results on the Alstom instances.

to, e.g., Clausen and Perregaard [8] for parallel strategies for branch-and-bound exact algorithms,
or to Ropke and Santini [37] for a systematic analysis of the speed-ups obtained by parallelising
the Adaptive Large Neighbourhood Search metaheuristic. With respect to the train rescheduling
problem, Igbal et al. [25, 26] proposed parallel algorithms for rescheduling under disturbances.

In our case, the implementation of a parallel algorithm is motivated by the high dispersion
of the solution values with respect to the average one, obtained by the different sorting methods,
as witnessed by the high values of Standard Deviation reported in Table 5 (this effect is more
evident for the 2s time limit compared to the 10s one, and for the RVNS policy compared to the
Tabu one). This means that, in practice, even the best sorting method was not able to resolve
some solvable conflict, thus resulting in high solution values, due to the hierarchical nature of
our objective function. Furthermore, we observed a certain complementarity in the capability of
resolving conflicts across different sortings, which we see as a hint towards the parallel use of
different sorting criteria.

More formally, we investigated the dependance of sorting criteria to instance characteristics via
simple one-vs-all and one-vs-one multiclass classification algorithms provided by the library scikit
(see, e.g., Aly [2]). These algorithms were based on the binary classifier that, for a fixed time
limit, assigns an instance to an intial sorting criterion (class) if there is at least one policy (either
Tabu or RVNS) for which that sorting provided the best result for that time limit. The instance
features considered were the one listed in Tables 1 and 2. Neither the one-vs-all nor the one-vs-one

algorithm found statistically significant relationships of the sorting criteria to the instance features.

Once established the need for an algorithm that employs more than one sorting criteria at once,
it is clearly important to perform a good choice of the criteria. The simplest approach would be to
choose the four criteria that produce the four lowest deviations for a given policy and time limit
(see Table 5). This choice, however, has not proven particularly good especially for the lowest time
limit, and in one case we even had one instance (instance “P4” for the Tabu policy at 2s) for which
not all solvable conflicts were actually resolved.

What we aim for is a choice of methods out of which, given any instance, there are high chances
to find one that works reasonably well with that instance, eliminating all solvable conflicts, and
therefore exploting the aforementioned complementarity. For this reason, we decided to choose the
methods in a way to maximise the number of instances for which at least one of the methods chosen
was the best. Table 6 lists the chosen sorting criterian for each policy and time limit.

Table 7 reports aggregate results for the parallel algorithm on the Alstom instances. Column
“Sorting” reports which initial sorting produced the optimal solution most often, for a fixed choice of
instance group and algorithm. Column “Dev” gives the average deviation, calculated as (z —z*)/z*

where z is the solution value obtained by the algorithm, and z* is the best known solution value.

Column “Conflicts” lists the average number of conflicts remaining in the output solution, while
columns “Infeasible” and “Modified” report, respectively, the number of trains that are infeasible
and whose schedule has been modified in the output solution. Finally, “Delay” lists the average
delay (or advance, in which case the figure is < 0) reported by trains at their final destination.
By observing the tables, it is clear that the benefit of the parallel algorithm is considerable

26



Instance group Algorithm Sorting Dev Conflicts Infeasible Modified Delay
S-1 Tabu 2s Reverse congestion 2.26-1072 0 0 4.60 132.67
S-1 Tabu 10s Reverse congestion 1.99-1072 0 0 4.60 131.72
S-1 RVNS 2s Reverse speed 3.58 . 1072 0 0 4.60 134.77
S-1 RVNS 10s Length, Speed 1.64-1072 0 0 4.60 129.30
S-2 Tabu 2s Reverse congestion 3.97-1073 0 0 3.80 63.77
S-2 Tabu 10s Congestion 1.83-1073 0 0 3.80 60.61
S-2 RVNS 2s Conflict time 6.75 - 10~* 0 0 3.80 60.04
S-2 RVNS 10s Speed 3.54-107* 0 0 3.80 59.80
S-3 Tabu 2s Length, Congestion 1.24-1072 0 0 5.20 185.33
S-3 Tabu 10s Congestion 2.65-1073 0 0 5.00 188.68
S-3 RVNS 2s Conflict time 7.52.1073 0 0 5.20 190.85
S-3 RVNS 10s Congestion, Speed 8.02-107° 0 0 5.20 186.63
N-1 Tabu 2s Random, Congestion 6.91-10~* 0 0 4.20 125.05
N-1 Tabu 10s Reverse congestion 6.91-10~* 0 0 4.20 125.05
N-1 RVNS 2s Conflict time 1.19-107" 0 0 3.80  154.79
N-1 RVNS 10s Congestion 2.25.107* 0 0 4.20 124.86
N-2 Tabu 2s Length 9.90 - 10~* 0 0 4.00 106.31
N-2 Tabu 10s Conflict time 9.90-107* 0 0 4.00  106.31
N-2 RVNS 2s Conflict time 7.52.107* 0 0 4.00 106.42
N-2 RVNS 10s Length 1.32-107 0 0 4.00 106.06
N-3 Tabu 2s Reverse congestion 2.15-1072 0 0 6.00 219.10
N-3 Tabu 10s Conflict time 7.14-1073 0 0 5.40 203.28
N-3 RVNS 2s Conflict time 9.28-107° 0 0 520  205.11
N-3 RVNS 10s Speed 7.40-1073 0 0 5.20 207.49
Overall 2s Conflict time 1.93.-10°2 0 0 4.20 140.27
Overall 10s Congestion 5.07-1073 0 0 4.23 135.90
Overall Tabu Reverse congestion 7.05-1073 0 0 4.30 137.32
Overall RVNS Conflict time 1.64-1072 0 0 4.20 138.84
Overall Conflict time 1.22.10°2 0 0 4.25 138.08

140

120

100

o]
o

Modified Trains
o2}
=}

40

20

Table 8: Parallel algorithm results on

%
g "
o .o
0o 0y
.
° ° °
oo o
° o o
B @ ¢ o
.o.o' o0 ©
1,25 1,75 2,25

the RAS-Based instances.

2,75

Average Deviation

3,75

Figure 11: Scatter graph (without outliers) showing the correlation between solution quality and number

of modified trains.

27



when compared to fixed choices of sorting criteria. This is particularly evident for the 2s time limit,
where the best average deviations achieved by using only one sorting (see Table 5) were of 226.44
for Tabu and 11.83 for RVNS, while the parallel algorithms gives — respectively — 0.22 and 0.35
(see the detailed results in Tables 9 and 10). In addition, by looking at the detailed results, we
can notice that all four sortings selected for each set (algorithm and time limit) provide the best
solution in some instances, with the “Congestion” sorting being the one appearing most frequently
overall, and also when aggregating by policy or by time limit.

For what concerns the choice of the heuristic policy, from the detailed results we can notice
that Tabu and RVNS turn out to provide the smallest instance-by-instance deviations almost the
same number of times: namely, both 15 times for 2s, and 18 vs 17 times for 10s. From Table 7
we can see, however, that Tabu provides smaller deviations, at the cost of modifying more trains.
A small further reduction could be achieved by an hypothetical algorithm that ran the Tabu and
RVNS policies in parallel (thereby using 8 concurrent threads): such an algorithm would achieve
an average deviation of 0.17 for 2s, and 0.06 for 10s. Finally, as we clearly expected, a considerable
improvement is obtained by letting the algorithm run for longer: the average deviation for all
methods ran for 10s is less than half than that for all methods ran for 2s.

Figure 11 displays the relation between the deviations achieved by the parallel algorithm and
the number of trains whose schedules have been modified. All the solutions described in Table 9 and
Table 10 are reported in the figure. The figure seems to suggest that, despite not having included
the number of modified trains as a penalty term in the objective funciont (see Section 4.4.5) there
are no solutions in which a lot of trains are modified and, despite that, bad solutions are obtained.
This can be seen by noticing that the upper-right triangle of the graph is empty. In summary,
the figure seem to suggest that three scenarios can happen. The first, best scenario is that a high
quality solution is found and few trains are modified (bottom-left cluster of points); in the second
scenario a high quality solution is found, but a lot of trains have to be modified (points on the
top-left corner); finally, rarely a bad solution is found, but in this case only few trains are modified
(bottom-right points).

Table 8 is analogous to Table 7 and reports aggregate results for the parallel algorithm on the
RAS-based instances. Notice that, due to the nature of the instances, the deviation are smaller
compared to those reported in Table 7, and all conflicts were resolved in each instance. Also, the
average number of modified trains is smaller for RAS instances than for Alstom instances; this is
not surprising, as the number of train in the nominal timetable was also smaller. Average delays
are, on the other hand, higher, probably due to the fact that the time horizon is longer for the
RAS-based instances.

As in the case of the Alstom instances, there is a lot of variability in which initial sorting criterion
leads to the best solution; not only some criterion works best with particular instances, but also
the combination of instance and policy seems to influence the effectiveness of the sorting criterion.
This confirms the negative results obtained by the classification algorithms, and the potential of a
(simple) parallel implementation in order to obtain good practical results.

7 Conclusions

In this paper we presented a fast algorithm for the conflicts resolution in real-time train traffic
management. The development of the algorithm was motivated by an extensive collaboration
between the authors and Alstom, and an industrial version of it is currently integrated into the
Train Management System ICONIS and will be deployed at various Alstoms customers worldwide.

The algorithm is designed to combine speed and flexibility through an abstract modelling of the
rail infrastructure that can be used both at a microscopic and at a macroscopic (i.e. aggregated)
representation of the network, and even a mix of the two. Overall the algorithm is based on
the repeated execution of a greedy approach which schedules trains on a time-spaced network
and several different dispatching rules. Two different shaking techniques, one based on Reduced
Variable Neighborhood Search and the other on Tabu Search, are implemented. The speed required
to handle realistic sized instances, involving tens of trains during a time horizons of a few hours,
is achieved by implementing different effective sparsification techniques of the time-space graph
which greatly reduce the computational effort while preserving good accuracy of the results. In
addition, an extensive study of the impact of each algorithm component on the quality and speed
of the algorithm was conducted, so as to identify some best performing parameter combinations
which can be used inside a simple parallelization scheme.

The algorithm is capable of handling the constraints typically encountered in real-world train
rescheduling applications and, thanks to the time-space representation and the greedy nature of

28



its main structure, can be easily adapted to accommodate possible further characteristics. Further-
more, a very general hierarchic objective function allows to optimize different aspects of the problem
as the number of possibly remaining conflicts, the average delay and the number of modifications
with respect to the nominal timetable.

An extensive computational testing has been performed by using both real-world instances pro-
vided by Alstom and artificial instances constructed from existing benchmarks from the literature.
The main aim of the testing was to identify the best performing components and parameter config-
urations and to validate the effectiveness of the algorithm for the real-time conflict resolution. The
obtained results show that the proposed algorithms is, within a few seconds, consistently capable
of resolving existing conflicts and obtain highly optimized solutions. This is also confirmed by
the extensive testing of the industrial version of the algorithm performed by Alstom during the
last years where the solutions were consistently found correct and effective by expert users when
compared with traditionally employed priority dispatching rules.

Even though some of the components of our algorithm were already known in the literature, we
think that the main contribution of our approach is the effective combination of various dispatching
rules with shaking, together with the use of sparsification and parallelization to achieve high speed
without compromising quality. Clearly the simple structure and the required speed may lead
sometimes to difficulty in removing all existing conflicts (or detecting that they are not solvable)
or in relatively poor solutions but the computational results show that this is a rare event and that
the algorithm provides an excellent compromise between quality and speed.

Acknowledgements

The authors are grateful to Alstom Transport for providing the test instances used for the compu-
tational validation of our method.

A Detailed results

Tables 9 and 10 provide instance-by-instance results for Tabu and RVNS policies, respectively.
Column “Sorting” specifies which was the sorting method employed in the thread that produced
the overall best solution. Column “Dev”, analogously to what presented in previous tables, is the
ratio between the objective value produced by the parallel algorithm and the best known objective
value for the same instance. Column “Conflicts” lists the number of hard and soft constraints
violated in the produced solution. Column “Inf Trains” tells how many trains remain infeasible
(i.e., with hard constraints violations). Column “Mod Trains” gives the number of trains whose
schedules have been modified. Finally, column “Avg Delay” lists, in time units, the average delay
(if > 0) or advance (if < 0) that a train reported when arriving at its destination. A { next to a
deviation indicates the best deviation produced for the corresponding instance, for that time limit.
When Tabu and RVNS attained the same deviation, the { is present in both tables.

Notice that there are instances for which no method was able to resolve all Conflict timelicts
(even when using a time limit of 60s). Manual inspection of these Conflict timelicts has Conflict
timeirmed that they are, indeed, unavoidable.

Tables 11 and 12 are analogous to Tables 9 and 10, but provide detailed results relative to the
RAS-based instances.

References

[1] R. Acuna-Agost, P. Michelon, D. Feillet, and S. Gueye. A mip-based local search method for
the railway rescheduling problem. Networks, 57(1):69-86, 2011.

[2] M. Aly. Survey on multi-class classification methods. Technical report, Caltech, 2015.

[3] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S. Thibault,
and R. Namyst. hwloc: A generic framework for managing hardware affinities in hpc appli-
cations. In Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, pages 180-186. IEEE, 2010.

[4] V. Cacchiani, A. Caprara, and P. Toth. Scheduling extra freight trains on railway networks.
Transportation Research Part B: Methodological, 44(2):215-231, 2010.

29



(5]

V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wagenaar. An
overview of recovery models and algorithms for real-time railway rescheduling. Transportation
Research Part B: Methodological, 63:15-37, 2014.

G. Caimi, M. Laumanns, K. Schiipbach, S. Woérner, and M. Fuchsberger. The periodic ser-
vice intention as a conceptual framework for generating timetables with partial periodicity.
Transportation Planning and Technology, 34(4):323-339, 2011.

A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling problem.
Operations research, 50(5):851-861, 2002.

J. Clausen and M. Perregaard. On the best search strategy in parallel branch-and-bound:
Best-first search versus lazy depth-first search. Annals of Operations Research, 90:1-17, 1999.

F. Corman and L. Meng. A review of online dynamic models and algorithms for railway
traffic management. IEEE Transactions on Intelligent Transportation Systems, 16(3):1274—
1284, 2015.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Evaluation of green wave policy in
real-time railway traffic management. Transportation Research Part C: Emerging Technologies,
17(6):607-616, 2009.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Centralized versus distributed systems
to reschedule trains in two dispatching areas. Public Transport, 2(3):219-247, 2010.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. A tabu search algorithm for rerouting
trains during rail operations. Transportation Research Part B: Methodological, 44(1):175-192,
2010.

F. Corman, A. D’Ariano, M. Pranzo, and 1. A. Hansen. Effectiveness of dynamic reordering
and rerouting of trains in a complicated and densely occupied station area. Transportation
Planning and Technology, 34(4):341-362, 2011.

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Bi-objective conflict detection and
resolution in railway traffic management. Transportation Research Part C: Emerging Tech-
nologies, 20(1):79-94, 2012.

F. Corman, A. D’Ariano, A. D. Marra, D. Pacciarelli, and M. Sama. Integrating train schedul-
ing and delay management in real-time railway traffic control. Transportation Research Part
E: Logistics and Transportation Review, 2016.

A. D’Ariano and M. Pranzo. An advanced real-time train dispatching system for minimizing
the propagation of delays in a dispatching area under severe disturbances. Networks and
Spatial Economics, 9(1):63-84, 2009.

A. D’Ariano, D. Pacciarelli, and M. Pranzo. A branch and bound algorithm for scheduling
trains in a railway network. Furopean Journal of Operational Research, 183(2):643-657, 2007.

A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and local rerouting
strategies to manage train traffic in real time. Transportation Science, 42(4):405-419, 2008.

A. D’Ariano, D. Pacciarelli, and M. Pranzo. Assessment of flexible timetables in real-time
traffic management of a railway bottleneck. Transportation Research Part C: Emerging Tech-
nologies, 16(2):232-245, 2008.

T. Dollevoet, D. Huisman, L. Kroon, M. Schmidt, and A. Schobel. Delay management includ-
ing capacities of stations. Transportation Science, 49(2):185-203, 2014.

W. Fang, S. Yang, and X. Yao. A survey on problem models and solution approaches to
rescheduling in railway networks. IEEE Transactions on Intelligent Transportation Systems,
16(6):2997-3016, 2015.

I. Hansen and J. Pachl. Railway timetabling & operations. Furailpress, Hamburg, 2014.

P. Hansen, N. Mladenovi¢, J. Brimberg, and J. Pérez. Variable neighborhood search. In
M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of Inter-
national Series in Operations Research & Management Science, pages 61-86. Springer, 2010.
ISBN 978-1-4419-1663-1.

30



[24]

[25]

INFORMS Railways Applications Section. Problem description and released data set
for the ras problem solving competition, 2012. URL https://www.informs.org/Community/RAS/
Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition.

S. M. Z. Igbal, H. Grahn, T. Krasemann, et al. A parallel heuristic for fast train dispatching
during railway traffic disturbances: Early results. In Ist International Conference on Opera-
tions Research and Enterprise Systems, ICORES, 2012.

S. M. Z. Igbal, H. Grahn, and J. T. Krasemann. Multi-strategy based train re-scheduling
during railway traffic disturbances. In Proceedings of the 5th International Seminar on Rail
Operations Modeling and Analysis (RailCopenhagen 2013, pp. 387-405), Technical University
of Denmark, Denmark, 2013.

S. Kanai, K. Shiina, S. Harada, and N. Tomii. An optimal delay management algorithm
from passengers’ viewpoints considering the whole railway network. Journal of Rail Transport
Planning € Management, 1(1):25-37, 2011.

L. Lamorgese and C. Mannino. The track formulation for the train dispatching problem.
Electronic Notes in Discrete Mathematics, 41:559 — 566, 2013.

L. Lamorgese and C. Mannino. An exact decomposition approach for the real-time train
dispatching problem. Operations Research, 63(1):48-64, 2015.

F. Li, Z. Gao, K. Li, and L. Yang. Efficient scheduling of railway traffic based on global
information of train. Transportation Research Part B: Methodological, 42(10):1008-1030, 2008.

A. Mascis and D. Pacciarelli. Job-shop scheduling with blocking and no-wait constraints.
European Journal of Operational Research, 143(3):498-517, 2002.

L. Meng and X. Zhou. Robust single-track train dispatching model under a dynamic and
stochastic environment: a scenario-based rolling horizon solution approach. Transportation
Research Part B: Methodological, 45(7):1080-1102, 2011.

L. Meng and X. Zhou. Simultaneous train rerouting and rescheduling on an n-track network:
A model reformulation with network-based cumulative flow variables. Transportation Research
Part B: Methodological, 67:208-234, 2014.

S. Mu and M. Dessouky. Scheduling freight trains traveling on complex networks. Transporta-
tion Research Part B: Methodological, 45(7):1103-1123, 2011.

P. Pellegrini, G. Marliere, and J. Rodriguez. Optimal train routing and scheduling for managing
traffic perturbations in complex junctions. Transportation Research Part B: Methodological,
59:58-80, 2014.

J. Rodriguez. A constraint programming model for real-time train scheduling at junctions.
Transportation Research Part B: Methodological, 41(2):231-245, 2007.

S. Ropke and A. Santini. Parallel adaptive large neighbourhood search. Technical Report
OR-16-11, DEI University of Bologna, 2016.

R. Ruiz and T. Stiitzle. A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Furopean Journal of Operational Research, 177(3):2033 — 2049,
2007. ISSN 0377-2217.

M. Sama, P. Pellegrini, A. D’Ariano, J. Rodriguez, and D. Pacciarelli. Ant colony optimization
for the real-time train routing selection problem. Transportation Research Part B: Method-
ological, 85:89-108, 2016.

A. Santini. cr-ras-derived-instances: Initial release, Feb 2017. URL https://doi.org/10.5281/
zenodo.322571.

M. Schachtebeck and A. Schobel. To wait or not to waitand who goes first? delay management
with priority decisions. Transportation Science, 44(3):307-321, 2010.

A. Schobel. Integer programming approaches for solving the delay management problem. In
F. Geraets, L. Kroon, A. Schoebel, D. Wagner, and C. Zaroliagis, editors, Algorithmic Methods
for Railway Optimization, volume 4359 of Lecture Notes in Computer Science, pages 145-170.
Springer Berlin Heidelberg, 2007.

31


https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
https://www.informs.org/Community/RAS/Problem-Solving-Competition/2012-RAS-Problem-Solving-Competition
https://doi.org/10.5281/zenodo.322571
https://doi.org/10.5281/zenodo.322571

[43] A. Schobel. Capacity constraints in delay management. Public Transport, 1(2):135-154, 2009.

[44] J. Toérnquist. Design of an effective algorithm for fast response to the re-scheduling of railway

traffic during disturbances. Transportation Research Part C: Emerging Technologies, 20(1):
62-78, 2012.

[45] J. Tornquist and J. Persson. N-tracked railway traffic re-scheduling during disturbances. Trans-
portation Research Part B: Methodological, 41(3):342-362, 2007.

[46] J. Toérnquist and J. A. Persson. N-tracked railway traffic re-scheduling during disturbances.
Transportation Research Part B: Methodological, 41(3):342-362, 2007.

32



Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
Tabu 2s progressive-2 N1 Length 0.20 0 0 9 94.14
N2 Length 10.13 0 0 15 198.53
N3 Reverse congestion  10.00 3 1 8 40.71
N4 Congestion 10.00 0 0 5 15.00
N5 Random 10.00 0 0 16 102.63
N6 Congestion 10.00 0 0 1 8.33
N7 Length 10.05 0 0 8 70.34
N8 Congestion 10.24 0 0 9 3.87
N9 Congestion 11.25 0 0 6 32.07
N10 Congestion 0.22 0 0 5 9.19
N11 Congestion 10.00 0 0 3 19.29
N12 Congestion 10.00 0 0 3 30.00
N13 Congestion 10.00 2 0 14 408.53
L1 Random 10.00 1 0 117 -13.71
L2 Reverse congestion  70.10 0 0 96 -39.17
L3 Random 10.00 2 0 113 87.02
L4 Reverse congestion 0.29 0 0 91 33.66
L5 Length 0.38 0 0 117 59.70
L6 Length 0.27 0 0 93 44.33
P1 Reverse congestion 0.47 0 0 54 243.21
P2 Reverse congestion  70.31 0 0 53 256.07
P3 Congestion 0.16 0 0 60 141.05
P4 Random 1.04 0 0 70 348.33
Overall 0.22 0.35 0.04 42.00 95.35
Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
Tabu 10s progressive-2 N1 Reverse speed 0.20 0 0 10 95.17
N2 Conflict time 10.00 0 0 15 192.35
N3 Congestion 10.00 3 1 9 49.29
N4 Congestion 10.00 0 0 5 15.00
N5 Congestion 10.00 0 0 16 102.63
N6 Congestion 10.00 0 0 1 8.33
N7 Congestion 10.01 0 0 9 70.34
N8 Congestion 10.24 0 0 9 3.87
N9 Congestion 10.38 0 0 8 10.34
N10 Congestion 10.22 0 0 5 9.19
N11 Congestion 10.00 0 0 3 19.29
N12 Congestion 10.00 0 0 3 30.00
N13 Congestion 10.00 2 0 14 305.74
L1 Reverse congestion  10.00 1 0 117 -23.14
L2 Reverse congestion 0.09 0 0 96 -42.23
L3 Conflict time 10.00 2 0 113 106.49
L4 Reverse congestion 0.17 0 0 91 28.85
L5 Reverse speed 0.29 0 0 118 73.71
L6 Congestion 0.12 0 0 93 30.34
P1 Reverse speed 10.00 0 0 54 233.84
P2 Conflict time 10.00 0 0 54 236.25
P3 Congestion 10.00 0 0 60 138.87
P4 Reverse speed 10.11 0 0 70 273.12
Overall 0.08 0.35 0.04 42.30 85.55

Table 9: Parallel algorithm results for the Tabu solver on the Alstom instances.

33



Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 2s linear-2 N1 Reverse congestion  10.19 0 0 9 94.14
N2 Reverse congestion 0.26 0 0 14 229.41
N3 Reverse congestion  10.00 3 1 9 48.75
N4 Reverse congestion 0.07 0 0 5 15.00
N5 Congestion 0.41 0 0 15 273.95
N6 Congestion 10.00 0 0 1 8.33
N7 Reverse speed 0.10 0 0 7 88.45
N8 Conflict time 0.52 0 0 6 49.35
N9 Conflict time 0.25 0 0 7 20.69
N10 Conflict time 10.11 0 0 5 6.77
N11 Congestion 10.00 0 0 3 19.29
N12 Congestion 10.00 0 0 3 30.00
N13 Congestion 10.00 2 0 14 406.76
L1 Conflict time 10.00 1 0 118 -5.25
L2 Conflict time 0.30 0 0 96 -17.48
L3 Reverse speed 10.00 2 0 113 81.07
L4 Reverse congestion  10.23 0 0 93 36.87
L5 Reverse speed 10.26 0 0 120 49.17
L6 Reverse speed 10.23 0 0 94 55.63
P1 Congestion 10.00 0 0 54 235.71
P2 Conflict time 0.32 0 0 54 236.25
P3 Conflict time 10.08 0 0 60 150.97
P4 Congestion 10.81 0 0 70 284.38
Overall 0.35 0.35 0.04 42.17 104.27
Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 10s progressive-3 N1 Random 10.13 0 0 9 97.76
N2 Random 0.12 0 0 15 198.53
N3 Speed 10.00 3 1 9 47.68
N4 Congestion 10.00 0 0 5 15.00
N5 Conflict time 10.00 0 0 16 101.05
N6 Congestion 10.00 0 0 1 8.33
N7 Conflict time 0.06 0 0 8 88.45
N8 Speed 1.45 0 0 7 28.55
N9 Speed 1.29 0 0 6 33.62
N10 Congestion 0.29 0 0 5 9.68
N11 Congestion 10.00 0 0 3 19.29
N12 Congestion 10.00 0 0 3 30.00
N13 Random 10.00 2 0 17 202.06
L1 Conflict time 10.00 1 0 116 -21.96
L2 Congestion 10.06 0 0 96 -46.75
L3 Conflict time 10.00 2 0 113 60.34
L4 Conflict time 10.03 0 0 82 19.01
L5 Congestion 10.15 0 0 114 14.21
L6 Speed 10.06 0 0 84 38.96
P1 Congestion 10.00 0 0 54 232.50
P2 Conflict time 10.00 0 0 54 234.91
P3 Random 10.00 0 0 60 134.52
P4 Congestion 0.81 0 0 70 284.38
Overall 0.19 0.35 0.04 41.17 79.57

Table 10: Parallel algorithm results for the RVNS solver on the Alstom instances.

34



Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Dels
Tabu 2s progressive-2 S-1-1 Length 4.10-1072 0 0 5 200.%
S-1-2 Reverse congestion 10 0 0 4 109.2
S-1-3 Length 3.32.1072 0 0 5 78.]
S-1-4 Reverse congestion 2.55 - 1072 0 0 5 186.¢
S-1-5 Reverse congestion 10 0 0 4 84.¢
S-2-1 Reverse congestion 3.37-1073 0 0 2 7€
S-2-2 Reverse congestion 3.44-1073 0 0 2 48.¢
S-2-3 Reverse congestion 7.26-107* 0 0 2 50.¢
S-2-4 Reverse congestion 1.16 - 1072 0 0 3 94.%
S-2-5 Reverse congestion 7.11-107* 0 0 2 53.¢
S-3-1 Reverse congestion 1.99.1074 0 0 12 604."
S-3-2 Length 2.41-107* 0 0 1 16.¢
S-3-3 Length 10 0 0 2 88.¢
S-3-4 Congestion 1.28-107? 0 0 7 95.(
S-3-5 Congestion 4.89-1072 0 0 4 121.
N-1-1 Random 2.24-107* 0 0 5 168.:
N-1-2 Length 1.13-1073 0 0 4 106.
N-1-3 Congestion 4.60-1074 0 0 3 82.4
N-1-4 Random 1.16-107% 0 0 4 171.1
N-1-5 Congestion 4.85-107* 0 0 5 96.¢
N-2-1 Random 2.22-107° 0 0 2 69.-
N-2-2 Length 10 0 0 4 97.1
N-2-3 Length 1.82.1073 0 0 3 67.:
N-2-4 Random 10 0 0 4 153.¢
N-2-5 Length 9.13-107* 0 0 7 143.¢
N-3-1 Reverse congestion 2.11-1072 0 0 13 690.
N-3-2 Reverse congestion 1.95-107* 0 0 1 17.]
N-3-3 Reverse congestion 10 0 0 2 106.(
N-3-4 Congestion 8.59 - 1072 0 0 10 162."
N-3-5 Random 3.64-107* 0 0 4 119.(
Overall 9.92-107° 0 0 4.37 138.
Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Dels
Tabu 10s progressive-2  S-1-1 Reverse congestion 5.62- 1072 0 0 5 205.7
S-1-2 Reverse congestion 0 0 0 4 109.2
S-1-3 Reverse congestion 3.32.1072 0 0 5 78.1
S-1-4 Congestion 2.38 1072 0 0 5 185.¢
S-1-5 Reverse speed 10 0 0 4 84.¢
S-2-1 Reverse speed 3.37-1073 0 0 2 70.¢
S-2-2 Congestion 3.44.1073 0 0 2 48.¢
S-2-3 Congestion 7.26-107* 0 0 2 50.¢
S-2-4 Congestion 9.02-107* 0 0 3 78.4
S-2-5 Congestion 7.11-107* 0 0 2 53.¢
S-3-1 Reverse speed 1.99-107* 0 0 12 604.
S-3-2 Congestion 2.41-107* 0 0 1 16.¢
S-3-3 Congestion 10 0 0 2 117.5
S-3-4 Congestion 1.28 1072 0 0 7 95.(
S-3-5 Congestion 10 0 0 3 109.1
N-1-1 Reverse congestion 2.24-107* 0 0 5 168.:
N-1-2 Reverse congestion 1.13-1073 0 0 4 106.4
N-1-3 Reverse congestion 4.60-10~* 0 0 3 82.
N-1-4 Conflict time 1.16-1073 0 0 4 171.1
N-1-5 Conflict time 4.85-107* 0 0 5 96.¢
N-2-1 Conflict time 2.22.1073 0 0 2 69.
N-2-2 Conflict time 10 0 0 4 97.1
N-2-3 Conflict time 1.82-1077 0 0 3 67.:
N-2-4 Conflict time 0 0 0 4 153.¢
N-2-5 Conflict time 19.13-107* 0 0 7 143.¢
N-3-1 Reverse speed 4.53-10* 0 0 12 657.
N-3-2 Conflict time 1.95-1074 0 0 1 17.1
N-3-3 Conflict time 10 0 0 2 106.(
N-3-4 Reverse speed 3.47-1072 0 0 8 116.¢€
N-3-5 Conflict time 3.64-107* 0 0 4 119.(
Overall 5.99-107° 0 0 4.23 136.1

Table 11: Parallel algorithm results for the Tabu solver on the RAS-based instances.

35



Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 2s linear-2 S-1-1 Reverse speed 5.51- 1072 0 0 5 204.39
S-1-2 Conflict time 5.37 - 1072 0 0 4 117.14
S-1-3 Reverse speed  12.04 - 1072 0 0 5 73.57
S-1-4 Reverse speed 3.69-1072 0 0 5 190.15
S-1-5 Conflict time 1.28-1072 0 0 4 88.57
S-2-1 Conflict time {0 0 0 2 70.05
S-2-2 Conflict time 10 0 0 2 47.51
S-2-3 Conflict time 7.26-107* 0 0 2 50.81
S-2-4 Conflict time 9.02-107* 0 0 3 78.43
S-2-5 Conflict time 1.42-1074 0 0 2 53.40
S-3-1 Reverse speed 10 0 0 12 604.23
S-3-2 Conflict time 7.22-107* 0 0 1 17.20
S-3-3 Conflict time 10 0 0 2 117.50
S-3-4 Conflict time 3.57-1072 0 0 8 106.61
S-3-5 Conflict time 1.17-1073 0 0 3 108.69
N-1-1 Conflict time 5.81-107! 0 0 3 314.07
N-1-2 Congestion 10 0 0 4 106.27
N-1-3 Conflict time 5.06 - 1073 0 0 3 84.08
N-1-4 Conflict time 1.45-1073 0 0 4 171.13
N-1-5 Conflict time 5.10-1073 0 0 5 98.41
N-2-1 Conflict time 1.78 1073 0 0 2 69.36
N-2-2 Conflict time 6.33-1074 0 0 4 97.68
N-2-3 Conflict time 3.03-107* 0 0 3 66.86
N-2-4 Conflict time 3.83-107* 0 0 4 154.45
N-2-5 Congestion 6.64-107* 0 0 7 143.75
N-3-1 Reverse speed 10 0 0 12 657.15
N-3-2 Conflict time 1.95-107* 0 0 1 17.13
N-3-3 Conflict time 10 0 0 2 106.09
N-3-4 Conflict time 4.53-1072 0 0 7 125.96
N-3-5 Reverse speed 9.09-107* 0 0 4 119.21
Overall 2.87-1072 0 0 4.16 141.99
Test set Instance Sorting Dev Conflicts Inf Trains Mod Trains Avg Delay
RVNS 10s progressive-3 S-1-1 Congestion 10 0 0 5 185.71
S-1-2 Length 2.90-1072 0 0 4 113.67
S-1-3 Speed 3.22-1072 0 0 5 77.76
S-1-4 Length $2.05 - 1072 0 0 5 184.59
S-1-5 Speed 3.02-107* 0 0 4 84.74
S-2-1 Speed 3.37-1073 0 0 2 70.91
S-2-2 Speed 0 0 0 2 47.51
S-2-3 Speed 10 0 0 2 50.24
S-2-4 Speed 0 0 0 3 77.10
S-2-5 Speed 0 0 0 2 53.25
S-3-1 Length 1.66- 1074 0 0 12 604.58
S-3-2 Speed 0 0 0 1 16.96
S-3-3 Speed 0 0 0 2 117.50
S-3-4 Congestion 10 0 0 8 85.42
S-3-5 Congestion 2.35-107* 0 0 3 108.69
N-1-1 Congestion 10 0 0 5 168.25
N-1-2 Congestion 1.13-1073 0 0 4 106.44
N-1-3 Congestion 10 0 0 3 82.27
N-1-4 Length 0 0 0 4 170.62
N-1-5 Length 0 0 0 5 96.72
N-2-1 Random 10 0 0 2 68.94
N-2-2 Length 5.06 - 10~* 0 0 4 97.58
N-2-3 Length 0 0 0 3 66.76
N-2-4 Length 1.53-1074 0 0 4 154.13
N-2-5 Length 0 0 0 7 142.91
N-3-1 Length 2.34-1072 0 0 12 697.16
N-3-2 Speed 0 0 0 1 17.08
N-3-3 Speed 0 0 0 2 106.14
N-3-4 Speed 1.36 - 1072 0 0 7 98.21
N-3-5 Speed 0 0 0 4 118.86
Overall 4.15-107° 0 0 4.23 135.69

Table 12: Parallel algorithm results for the RVNS solver on the RAS-based instances.

36



	Introduction
	Timetables and conflicts
	Literature Review
	Problem description
	Network and timetables
	Time-space graph
	Constraints
	Illegal crossing and overtake
	Capacity violation
	Headway violation
	Time dependencies
	Split and merge
	Maximum and minimum entry, exit, and travel times

	Objective function
	Delays
	Dependency breaking
	Capacity violations
	Detours
	Other terms


	Solution Algorithm
	Initial sorting
	Construction
	Shaking
	Sparsification

	Computational Results
	Parameter tuning
	Parallel algorithm

	Conclusions
	Detailed results

