
Integrating Public Transport in Sustainable Last-Mile
Delivery: Column Generation Approaches

Diego Delle Donne delledonne@essec.edu1, Alberto
Santini alberto.santini@upf.edu1,2,3,4, and Claudia

Archetti archetti@essec.edu1

1 Department of Information Systems, Decision Sciences and Statistics,
ESSEC Business School, 3 Avenue Bernard Hirsch, 95021, Cergy, France

2 Institute of Advanced Studies, CY Cergy Paris Université, 1 Rue Descartes,
95000, Neuville-sur-Oise, France

3 Department of Economics and Business, Universitat Pompeu Fabra, Carrer
Ramon Trias-Fargas, 25–27, 08005, Barcelona, Spain

4 Data Science Centre, Barcelona School of Economics, Carrer Ramon
Trias-Fargas, 25–27, 08005, Barcelona, Spain

24th December 2024

Abstract

We tackle the problem of coordinating a three-echelon last-mile delivery system. In the
first echelon, trucks transport parcels from distribution centres outside the city to public
transport stops. In the second echelon, the parcels move on public transport and reach
the city centre. In the third echelon, zero-emission vehicles pick up the parcels at public
transport stops and deliver them to customers. We introduce two extended formulations
for this problem. The first has two exponential sets of variables, while the second has
one. We propose column generation algorithms and compare several methods to solve
the pricing problems on specially constructed graphs. We also devise dual bounds, which
we can compute even when the graphs are so large that not a single round of pricing
completes within the time limit. Compared to previous formulations, our models find 17
new best known solutions out of an existing dataset of 24 from the literature.

Keywords:last-mile delivery, logistics, column generation, routing problems, resource-constrained
shortest path problems

1 Introduction
The e-commerce boom and its growth projections (Alfonso et al. 2021) raise new challenges
as retailers and couriers innovate their supply chains to keep up with demand. Last-mile
delivery (LMD), the supply chain segment that starts at the last distribution centre and ends
at the customer’s doorstep, is particularly affected. Its nature changed when retailers stopped
delivering to stores only and started delivering directly to consumers: couriers now handle many
small parcels instead of fewer, larger shipments; they deliver during tight time windows when

1



Figure 1: Two pilot projects launched in 2021 in Germany and England to use spare capacity
on public transport vehicles. On the left: operators loading parcels on a tram operated by
AVG in Karlsruhe, Germany. In 2021, the Mobility Cluster of Karlsruhe started a pilot project
named “RegioKargo” to transport light cargo on the region’s tram and commuter train network.
Photo by Michael Krauth, AVG, reproduced with permission. On the right: in 2021, Orion
Railways launched a pilot project to deliver parcels on commuter trains to London Euston
station, from where they are delivered using cargo bikes. Photo by Rails Ops Group reproduced
with permission.

customers are at home; they deal in real-time with newly incoming orders while their fleet is
already busy shipping other parcels.

The volume growth in LMD has also raised concerns, especially in dense urban environments
where the externalities—traffic, emissions, noise, congestion—have become noticeable (see, e.g.,
the review by Viu-Roig and Alvarez-Palau (2020) and the recent papers by Wang, Rabinovich
and Guda (2023), Majoral, Gasparín and Saurí (2021) and Caspersen (2021)). Several authors
in Operational Research (OR), Environmental Engineering, Urban Planning, and Economics
have proposed alternative LMD implementations to reduce externalities while guaranteeing
a timely and cost-effective service. Solutions range from deliveries using autonomous drones,
bicycles, or porters (Silva, Amaral and Fontes 2023) to congestion taxes and economic incentives.
For an OR perspective on LMD services, we refer the reader to the two recent surveys by
Archetti and Bertazzi (2021) and Boysen, Fedtke and Schwerdfeger (2021).

In the rest of this paper, we focus on a promising operational practice: integrating public
transport within LMD to leverage the unused capacity of public transit vehicles and reduce
the number of delivery vans in the city. This concept has emerged during the last years
and is gaining traction, both academically (see Section 2) and in practice, as demonstrated
by numerous pilot projects (Baron 2019; Sustainable Bus 2021; Der Spiegel 2020; Saito and
Shimbun 2021; Clinnick 2020; Longhorn 2021; Antkowiak 2018), technical reports (Edrington
et al. 2017; Deloison et al. 2020; Segura et al. 2020) and patents (Bhatt 2019).

In our study, we consider a three-echelon system. In the first echelon, transport trucks move
parcels from distribution centres to public transport stops. In the second echelon, public
transport vehicles transport the parcels towards the city centre and leave them at some of
their scheduled stops. In the third echelon, zero-emission vehicles, such as cargo bikes, deliver
the parcels to the customers’ preferred locations.

This system reduces the number of vehicles on urban roads as parcels enter the city on public
transport rather than on trucks. As mentioned above, pilot projects are exploring the feasibility

2



of this approach using almost all types of transit vehicles: buses (Saito and Shimbun 2021),
trams (Sustainable Bus 2021; Antkowiak 2018), commuter trains (Clinnick 2020; Longhorn
2021) and metro (Der Spiegel 2020). Most of these pilot projects started in 2020 or 2021 as
a response to the increase in e-commerce which has followed the COVID-19 pandemic (see,
e.g., Guthrie, Fosso-Wamba and Arnaud (2021), Villa and Monzón (2021b) and Beckers et
al. (2021)). Figure 1 shows two examples of pilot projects launched in 2021, which use spare
capacity on public transport vehicles to transport parcels. Mobility company AVG of Karlsruhe,
Germany, uses trams, while Orion uses commuter trains in London, UK.

This paper proposes new formulations for the Three-Tier Delivery Problem using Public Trans-
portation (3T-DPPT), a problem first introduced by Mandal and Archetti (2023). The main
contributions of the present paper are the following:

• We introduce a 3T-DPPT extended formulation using two exponential sets of variables.
We propose a column generation algorithm and solve separate pricing subproblems for
each of the two exponential sets of variables. In one of the two subproblems, the resulting
shortest path problem features time-dependent label costs. We propose two novel labelling
algorithms to solve this subproblem: one explicitly exploits the time dependence, while
the other operates on a transformed graph where costs no longer depend on time. We
embed the column generation approaches in a restricted master heuristic, thus obtaining
a heuristic algorithm for the 3T-DPPT.

• We perform a computational campaign showing that our algorithm outperforms, espe-
cially on larger instances, a compact formulation and a semi-compact formulation where
one of the two sets of exponential variables mentioned above is replaced by a polynomial
set of variables (with a different set of constraints). In addition, our heuristic outperforms
the heuristics proposed by Mandal and Archetti (2023) by producing primal solutions with
better objective values.

The paper is organised as follows. In Section 2, we survey the relevant literature. We define
the problem in Section 3 and describe the extended formulations in Section 4. The latter
section also introduces a semi-compact formulation containing only one set of exponentially
many variables. The main characteristics of the column generation approach are illustrated in
Section 5, while Section 6 describes additional speed-up techniques. We report computational
results in Section 7 and conclusions in Section 8.

2 Related literature
This section positions our work in the growing literature on integrating public transport with
LMD. Systems integrating parcel delivery and public transport are inherently multi-echelon.
Indeed, public transit vehicles cannot be in charge of the parcels’ first and last legs, i.e., picking
them up at warehouses and delivering them to customers’ homes. In most systems, parcels are
transshipped twice; therefore, three echelons arise. From this point of view, the corresponding
optimisation problems share some similarities with multi-echelon location-routing problems
(Drexl and Schneider 2015). Although some authors have adapted hub location problems (Ji
et al. 2020; Zhao et al. 2018) and location-routing problems (Gianessi et al. 2016) to the
scenario of hybrid transit-freight LMDs, there are important differences between the two fields.
Location-routing problems combine strategic location decisions with operational routing ones.
This aspect is largely absent in the literature on integrating public transport and LMD, and
the two decisions are usually made sequentially.

At the strategic level, Delle Donne, Alfandari et al. (2023) have studied long-term decisions

3



arising specifically when planning a 3T-DPPT system. The decisions concern which public
transport lines and stops to use in the 3T-DPPT, considering that the corresponding vehicles
and stops will be equipped appropriately, at a cost. The objective is to maximise the number of
parcels served through the system, subject to a maximum number of lines and stops to include.
They propose a column generation approach and perform an extended computational campaign
and a sensitivity analysis. They conclude that, given a limited budget, a planner should equip
a limited number of vehicles and stops with high capacity rather than expanding the 3T-DPPT
network to many lines and stops.

On the other hand, problems such as our 3T-DPPT are only concerned with operational de-
cisions and assume that the public transport lines and the stops involved in the integrated
network have already been fixed. In this line of work, we mention the contributions of Man-
dal and Archetti (2023), Ghilas, Demir and Van Woensel (2016b) and Ghilas, Demir and Van
Woensel (2016a).

As mentioned in Section 1, Mandal and Archetti (2023) introduced the 3T-DPPT. In the
problem name, the word “tier” is a synonym of “echelon”, which is more popular in the logistics
literature. Unlike our setting, in (Mandal and Archetti 2023), first-echelon transport trucks can
park and wait indefinitely at public transport stops. Because such a practice would be hardly
acceptable in real implementations, in our problem, we force trucks to unload parcels as soon
as they arrive at a stop. The authors proposed a compact formulation, which they showed to
be too large to be used in practice, and decomposition approaches. They split the problem
into three subproblems corresponding to the three echelons of the delivery network and solve
each part in sequence, using the solution obtained in a subproblem to constrain the decision
space of the next one. They obtain three heuristic algorithms differing in the order in which the
subproblems are solved. The authors test their approach on instances with 10–80 customers,
which they identify as the largest instances for which they can obtain primal feasible solutions
using the decomposition heuristic.

Like our work, Ghilas, Demir and Van Woensel (2016b) and Ghilas, Demir and Van Woensel
(2016a) consider integrating generic scheduled public transport lines with LMD operations.
The authors propose two variants of the Pickup and Delivery Problem with Time Windows
(PDPTW), in which part of each request’s journey can happen on a scheduled line. The first
variant, studied in (Ghilas, Demir and Van Woensel 2016b), is the PDPTW with Scheduled
Lines (PDPTWSL); the second, studied in (Ghilas, Demir and Van Woensel 2016a), is the
PDPTWSL with Stochastic Demands (PDPTWSLSD). In both variants and different from our
setting, the same trucks which bring the parcels to public transport stations can also perform
the final delivery to customers. The authors also assume infinite capacity and no maximum
waiting time at public transport stations and that parcel transhipments can only happen at
end-of-line terminal stations. In the PDPTWSLSD, the amount of capacity that each parcel
takes on the vehicles (i.e., the demand) is unknown—although distributed according to a known
distribution—until the first truck picks it up, making the problem stochastic. If the realised
demand for a parcel turns out to be too large for the capacity of the vehicle scheduled to pick it
up, the authors assume the payment of a penalty due to outsourcing the shipment. In (Ghilas,
Demir and Van Woensel 2016b), the authors propose an ALNS heuristic, and in (Ghilas, Demir
and Van Woensel 2016a), they extend it, combining it with a Sample Average Approximation
method to adapt it to the stochastic case. In both cases, they observe savings in operational
costs compared to the truck-only scenario, but they do not analyse the potential environmental
benefits.

Another difference with location-routing literature is that the parcels’ itinerary is severely con-
strained both in space and time in at least one echelon. Indeed, public transit lines follow a fixed

4



itinerary and a predetermined schedule. Some authors have thus focused on only optimising
the echelon involving public transit. In such a case, a natural question is if the transit schedule
can be improved to facilitate freight operations alongside passenger ones. In (Hörsting and
Cleophas 2023), the authors study a system where a single tram line is used to move parcels,
sharing capacity with passengers. Given a known passenger demand during the day, they aim
to schedule parcel transport with a bi-objective model that minimises passenger inconvenience
and delivery delays. Once this deterministic model is solved using a black-box integer solver,
the authors validate the solution with a stochastic event-based simulation in which parcels are
still deterministic, but passenger flows are stochastic.

Other approaches deal with the complexity of a three-echelon distribution system by applying
some simplifying assumptions. Like our work, Masson et al. (2017) consider a three-echelon
model with trucks moving parcels from distribution centres to bus stops. Buses bring the
parcels—packed in roll containers—to designated stops, where tricycles perform deliveries to
end customers. The authors make three assumptions. First, bus lines start at the distribution
centre, reducing the number of echelons from three to two. Second, they assume that only one
bus line is available. Finally, they assume that each tricycle can carry exactly one roll container.
Therefore, no consolidation of parcels travelling on different buses but delivered by the same
rider is possible; analogously, parcels carried on the same bus cannot be taken to different stops
to be picked up by different riders. The authors minimise the number of tricycle riders needed
to satisfy demand and, secondarily, their total travel time. They develop an Adaptive Large
Neighbourhood Search (ALNS) heuristic, which they use to solve a case study in La Rochelle,
France, involving one bus line with eight stops and up to 303 customers.

He and Yang (2018) studied the possibility of delivering parcels using urban buses in Dalian,
China. In this case, the simplifying assumptions are that parcels can be loaded onto buses only
at the start terminal of a line and unloaded only at the end terminal. Using an Ant Colony
Algorithm, the authors minimise fixed and variable costs, compensation costs for excess carbon
emissions, and late-delivery penalties. Their results show savings of up to 10% and a reduction
of CO2 emissions of up to 13%.

Not all works about integrating public transport with LMD use optimisation techniques to
make the integrated system efficient. The contributions we describe in the following focus on
case studies and are useful to assess the real-life impact of such systems on various metrics,
such as costs, carbon emissions and passenger delays.

Kikuta et al. (2012) carried out a 2-week pilot project in Sapporo, Japan, where heavy snowfall
poses significant challenges to parcel distribution in winter. The authors partnered with Sap-
poro’s transport authority and a logistic operator to use the metro to carry hand-pushed carts
with parcels during three off-peak times daily. The parcels moved from a suburban logistic
centre to the inner city, where they went out for delivery. The authors concluded that this
system reduced both congestion in surface roads and CO2 emissions. Zhou and Zhang (2020)
analysed the possibility of using a metro line for parcel delivery in three configurations: using
trolley carts on a regular car, dedicating a car to freight cargo but within an otherwise pas-
senger train, and using a freight-only train. They evaluate carbon emissions reductions of up
to 50% for the scenario in which high parcel demand and commuters’ off-hours justify using a
dedicated train. Recently, Villa and Monzón (2021a) proposed using Madrid’s metro system
for parcel delivery. The authors devise a system in which packets travel on the metro and
are stored at station lockers, where customers can pick them up at their convenience. They
compare two modes of operation: shared trains, used by both parcels and commuters and ded-
icated freight-only trains. They quantify the economic, environmental and social costs required
to implement such a system and find that, after an initial investment, operators can reduce

5



logistic costs by 11–14%.

Bruzzone, Cavallaro and Nocera (2021) present two case studies of integrating LMD and public
transport, both focused on sparsely populated areas. The first case concerns the farthest islands
of the Venice lagoon in Italy, which are served by two water-bus lines; the second case includes
the town of Velenje, Slovenia, and its neighbouring villages, which are collectively served by five
bus lines. The authors assess the economic, environmental, and social advantages of carrying
parcels on the (water-)buses and conclude that these advantages are more pronounced when
delivery and pickup locations are limited, travel demand is inelastic, and parcel recipients
are willing to pick their parcels up at public transport stops (thus eliminating the need for
the third echelon to move parcels from stops to customers’ houses). Through an analysis of
both technical and legal literature, they conclude that regulatory aspects, more than technical
challenges, hinder the wider adoption of such integrated systems.

3 Problem definition
In this section, we formally define the 3T-DPPT. The main notation used throughout the paper
is reported in Table 1. Figure 2 provides a visual representation of the three-echelon system.
Dashed arrows make up the first-echelon truck routes, coloured solid lines represent bus lines,
and dotted arrows make up the third-echelon courier routes. Dots are public transport stops;
the filled ones are the stops where buses pick up parcels and the empty ones are the stops where
buses deliver them. The CDC is depicted as a rectangle, while customers are represented as
small pentagons.

The objective of the problem is to deliver parcels to a set C of customers. Each customer c ∈ C
must receive one parcel of size qc ≥ 0 (size here refers generically to the amount of capacity the
parcel would use on a vehicle) during a delivery time window

[
¯
Tc, T̄c

]
at a location of choice. We

assume that all delivery requests are known in advance and that all parcels start their journey
at a Consolidation and Distribution Centre (CDC), denoted with o.

In the first tier, trucks carry parcels from the CDC to public transport stops. We denote
with D the set of trucks. We consider homogeneous vehicles with capacity QD, although our
formulation can be naturally extended to a heterogeneous fleet. Let S in be the set of public
transport stops that the trucks can use to unload a parcel so that a bus will later pick it up
(in the following, we use the term “bus” for simplicity, although any form of public transport
could be equally used). We refer to stops of S in as “in-stops”. Unloading parcels at stop s ∈ S in

incurs a service time Ts. Parcels can wait at the stop for a maximum time Wmax. The service
time models the handling of the parcel: a parcel unloaded by the truck at time t will be ready
for pick-up by a bus at time t + Ts. The maximum wait time can be used to ensure that bus
stops are not used for long-term parcel storage.

The driving time between two locations u, v ∈ {o}∪S in is denoted with luv. We assume that each
truck route is elementary, i.e., it visits each in-stop at most once. This requirement, however,
would be easy to drop given our method to handle the first tier (see Section 4) because it would
correspond to dropping the elementarity requirement from a shortest-path problem. Finally,
we impose that trucks depart from the in-stop as soon as they have unloaded the corresponding
parcels. As mentioned in Section 2, this is the only respect in which our definition differs from
that of Mandal and Archetti (2023). We introduce this requirement because a truck parked at a
stop would unduly occupy the public road and hinder the operations of public transport vehicles.
If, for some particular application, this requirement does not apply, it can be straightforwardly
removed from our model.

6



Set Description

C Set of customers.
D Set of first-echelon trucks.
S Set of bus stops.
P Set of buses.
K Set of couriers.
S in ⊂ S Stops where buses can pick parcels up (in-stops).
Sout ⊂ S Stops where buses can deliver parcels (out-stops).
S in
c ⊂ S in In-stops that can be used to deliver a parcel to customer c ∈ C.

Sout
c ⊂

Sout
Out-stops from where customer c ∈ C can be served by a courier.

Sp ⊆ S Sequence of bus stops served by bus p ∈ P .
S in
pc ⊆ S in

c In-stops served by a bus p ∈ P that can carry the parcel of customer c ∈ C.
RD Set of feasible truck routes.
RD

c ⊆ RD Feasible truck routes which carry the parcel of customer c ∈ C.
RD

spc ⊆
RD

c

Feasible routes that a truck can use to take the parcel of customer c ∈ C to in-stop s ∈ S in
c , at a

time at which bus p ∈ P may pick it up.
RF Set of feasible courier routes.
RF

c ⊆ RF Feasible courier routes which deliver the parcel of customer c ∈ C.
RF

s ⊆ RF Feasible courier routes starting and ending at out-stop s ∈ Sout.
RF

spc ⊆ RF
c Set of feasible routes which a courier can use to deliver the parcel of customer c ∈ C after bus

p ∈ P delivers it at out-stop s ∈ Sout
c .

P in
sc ⊆ P Buses serving in-stop s ∈ S in at a time compatible with carrying the parcel of customer c ∈ C.

Pout
sc ⊆ P Buses serving out-stop s ∈ Sout at a time compatible with carrying the parcel of customer c ∈ C.

Parameter Description

qc ≥ 0 Size of the parcel of customer c ∈ C.

¯
Tc ≥ 0 Start of the delivery time window at customer c ∈ C.
T̄c ≥

¯
Tc End of the delivery time window at customer c ∈ C.

Ts ≥ 0 Service time at bus stop s ∈ S.
Tc ≥ 0 Service time at customer c ∈ C.
tsp ≥ 0 Scheduled arrival time of bus p ∈ P at stop s ∈ Sp.
o Location of the CDC.
luv ≥ 0 Travel time between locations u and v. Defined for u, v ∈ {o} ∪ S in and u, v ∈ Sout ∪ C.
QD ≥ 0 Truck capacity.
Qp ≥ 0 Capacity of bus p ∈ P .
QF ≥ 0 Courier capacity.
Wmax ≥ 0 Maximum time a parcel can wait at a stop.
Lmax ≥ 0 Maximum duration of a courier route.
sk ∈ Sout Origin out-stop of courier k ∈ K.
ns ∈ N Number of available couriers at out-stop s ∈ Sout.
cR ≥ 0 Cost of route r ∈ RD ∪RF.
G = (V,A) Graph used for time-dependent labelling.
H =
(W,B)

Graph used for scalar-cost labelling.

ta ≥ 0 Travel time of arc a ∈ A in the graph used for time-dependent labelling (Section 5.1.1).
νsc(t) ∈ R Benefit of arriving at vertex (s, c) ∈ V at time t ≥ 0 when using time-dependent labelling.
Ips Time interval during which it is feasible for a parcel ready at bus stop s ∈ S in to be loaded onto

bus p ∈ P .
CP (t) ∈ R Time-dependent reduced cost function of a path P in graph G, when the truck leaves the CDC

at time t.
Λs ∈ N+ Number of time intervals during which the dual values associated with a stop s ∈ S are constant

in a given pricing problem iteration.
wsℓ The ℓ-th time interval during which the dual values associated with stop s ∈ S are constant.
mrcs(c) ∈
R

Highest reduced cost achievable by delivering the parcel of customer c ∈ C at in-stop s ∈ S in
c .

v+s and v−s Checkpoint vertices added to the time-dependent labelling graph G.

Variable Description

xr ∈ {0, 1} Takes value one if and only if route r ∈ RD is used.
yr ∈ {0, 1} Takes value one if and only if route r ∈ RF is used.
zin
spc ∈
{0, 1}

Takes value one if and only if bus p ∈ P in
sc picks up the parcel of customer c ∈ C at in-stop s ∈ S in

c .

zout
spc ∈
{0, 1}

Takes value one if and only if bus p ∈ Pout
sc unloads the parcel of customer c ∈ C at out-stop

s ∈ Sout
c .

Table 1: Main notation used throughout the paper.

7



Stop where buses pick up parcels

Stop where buses deliver parcels

Customer

Truck route

Bus line

Courier route

Figure 2: Illustrative example of a last-mile delivery system based on the 3T-DPPT.

We remark that we make no assumptions on how trucks continue their service. Because in-stops
are usually geographically concentrated and available spare capacity on public transport is also
concentrated during off-peak hours, trucks can be used for standard delivery service during
the rest of the day. For example, if trucks should be used for home deliveries after visiting
the in-stops, the planner can devise open routes that end at the last visited in-stop by setting
luo = 0 ∀u ∈ S in.

In the second tier, each parcel travels between two bus stops aboard a bus. We denote the
set of buses with P . Each bus p ∈ P has capacity Qp and serves a route Sp = (s1p, . . . , s

|Sp|
p )

represented by the ordered list of stops the bus visits. To denote that a stop s is part of the
route of bus p, we write simply s ∈ Sp. The scheduled arrival time of p at stop s ∈ Sp is
tsp. Because bus routes operate according to periodic timetables, set P contains multiple buses
operating the same route at different times. Moreover, in real life, a single bus can operate a
given line many times during the day. Such a bus would be represented by multiple entries in
P .

In the third tier, couriers move parcels between bus stops and customer locations. The set of bus
stops enabled for courier pick up is denoted as Sout; we refer to these as “out-stops”. Because
trucks do not enter the city centre and couriers do not go outside the city, each stop is either
used for truck-to-bus transhipment (if outside the centre) or for bus-to-courier transhipment
(if in the city centre), and thus S in ∩ Sout = ∅. For the same reason, in-stops precede out-stops
in all bus routes. Each stop s ∈ Sout has a service time Ts and a maximum wait time Wmax,
analogous to those of S in. We denote with K the set of couriers who can perform the deliveries
to the customers. A courier k ∈ K has capacity QF and is assigned to a stop sk ∈ Sout. Each
courier starts the route at sk, visits a number of customers, and finally comes back to the same
stop. Courier travel time between locations u, v ∈ Sout ∪C is denoted as luv (because the set of
locations which trucks and couriers can visit is disjoint, the notation is not ambiguous). Each
courier route has a maximum duration of Lmax, which includes both the travel time and service

8



times Tc incurred when delivering parcels to customers c ∈ C. We assume a homogeneous fleet
of couriers and denote with ns the number of couriers which can start from stop s ∈ Sout. To
facilitate delivery operations, each customer c has an associated subset of stops Sout

c ⊆ Sout

from which they can be served. For example, stops s ∈ Sout such that lsc + Tc + lcs > Lmax

are excluded from Sout
c because they cannot be used to serve c while respecting the courier’s

maximum route duration time. Other real-life operational considerations can lead to excluding
further stops, e.g., if a stop is too far from the customer or if it is not possible to reach the
customer using a safe bike path.

The goal of the 3T-DPPT is to determine a distribution plan to deliver all parcels at minimum
cost. The cost is the sum of the route costs of the first- and third-tier vehicles.

4 Formulation
To introduce our formulation for the 3T-DPPT, we must consider some additional notation.
We denote the set of in-stops which can be used to deliver a parcel to customer c as S in

c . We
build this set and the other sets introduced in this section in Appendix A. We denote with RD

c

the set of feasible truck routes which carry the parcel of customer c and with RD the set of all
feasible truck routes. A feasible route must visit each in-stop at most once, deliver each parcel
on board the truck to exactly one in-stop, start and end at the CDC, respect the capacity limit,
and have an assigned start time from the CDC.

With an analogous notation, RF
c denotes the set of feasible courier routes which deliver customer

c’s parcel, while RF is the set of all feasible courier routes. A feasible route must start and end
at the same out-stop, visit each customer whose parcel is on-board exactly once and during the
corresponding time window, and respect both the courier’s capacity and the maximum route
duration limit. We can also partition RF based on the starting out-stop of the route; in this
case, set RF

s denotes all feasible courier routes starting and ending at s ∈ Sout.

Finally, we introduce two more subsets of routes. The first, RD
spc ⊆ RD

c , contains all feasible
routes that a truck can use to take customer c’s parcel to in-stop s ∈ S in

c , at a time at which
bus p ∈ P may pick it up. The second, RF

spc ⊆ RF
c ∩ RF

s , contains all feasible routes which a
courier can use to deliver customer c’s parcel after bus p ∈ P delivers it at out-stop s ∈ Sout

c .
These two sets are characterised more precisely in Appendix A.

Both truck and courier routes have an associated cost cr > 0 (for r ∈ RD ∪RF). Our formula-
tion allows the cost to depend on the route characteristics in many ways to adapt to real-life
circumstances, and the only assumption we make on route costs is that they are strictly positive.
For example, in the case of trucks, the cost is often proportional to the distance travelled (fuel
cost) or to the travel time (driver hourly compensation). In the case of couriers, the cost can
be proportional to the travel time or a step function of the travelled distance (as is common in
crowdsourcing platforms). For consistency with Mandal and Archetti (2023), we consider route
costs proportional to the travelled distance, with different multipliers for drivers and couriers.

In the following formulation, we denote the sets of buses that serve in-stop (out-stop) s at a
time compatible with carrying the parcel of customer c as P in

sc (Pout
sc ), and the set of in-stops

served by a bus p that can carry the parcel of customer c as S in
pc. These sets are defined more

formally in Appendix A.

Our formulation uses the following sets of variables: xr ∈ {0, 1} taking value 1 iff truck route
r ∈ RD is used; yr ∈ {0, 1} taking value 1 iff courier route r ∈ RF is used; zin

spc ∈ {0, 1} with
value 1 iff bus p ∈ P in

sc picks up the parcel of customer c ∈ C at in-stop s ∈ S in
c ; zout

spc ∈ {0, 1}

9



with value 1 iff bus p ∈ Pout
sc unloads the parcel of customer c ∈ C at out-stop s ∈ Sout

c . The
extended formulation of the 3T-DPPT then reads as follows:

min
∑
r∈RD

crxr +
∑
r∈RF

cryr (1a)

s.t.
∑
r∈RD

xr ≤ |D| (1b)∑
r∈RF

s

yr ≤ ns ∀s ∈ Sout (1c)

∑
s∈Sin

c

∑
p∈P in

sc

zin
spc = 1 ∀c ∈ C (1d)

∑
s∈Sin

pc

zin
spc =

∑
s∈Sout

pc

zout
spc ∀c ∈ C, ∀p ∈ Pc (1e)

∑
c∈C

qc
∑
s∈Sin

pc

zin
spc ≤ Qp ∀p ∈ P (1f)

zin
spc ≤

∑
r∈RD

spc

xr ∀c ∈ C, ∀p ∈ Pc, ∀s ∈ S in
pc (1g)

zout
spc ≤

∑
r∈RF

spc

yr ∀c ∈ C, ∀p ∈ Pc, ∀s ∈ Sout
pc (1h)

∑
r∈RD

c

xr ≥ 1 ∀c ∈ C (1i)

∑
r∈RF

c

yr ≥ 1 ∀c ∈ C (1j)

xr ∈ {0, 1} ∀r ∈ RD (1k)
yr ∈ {0, 1} ∀r ∈ RF (1l)
zin
spc ∈ {0, 1} ∀c ∈ C, ∀s ∈ S in

c , ∀p ∈ P in
sc (1m)

zout
spc ∈ {0, 1} ∀c ∈ C, ∀s ∈ Sout

c , ∀p ∈ Pout
sc . (1n)

The objective function (1a) minimises the combined costs of routing trucks and couriers. Con-
straints (1b) and (1c) ensure, respectively, that the maximum number of available trucks and
couriers (the latter at each out-stop) is not exceeded. Constraint (1d) asserts that each parcel
is picked up by one bus, while constraint (1e) ensures that the same bus picks up and delivers
each parcel. Constraint (1f) ensures that the bus capacity is respected. Constraints (1g) and
(1h) link, respectively, variables zin with x and variables zout with y. Finally, constraints (1i)
and (1j) state that the parcel of each customer must be included in at least one truck route and
at least one courier route, respectively. These constraints are not required for a correct formu-
lation of the problem. The following theorem, proved in the supplemental material’s Section 1,
shows that, despite their simplicity, (1i) and (1j) are not implied by the other inequalities
in fractional solutions, and can considerably improve the quality of the linear relaxation of
(1a)–(1n).

Theorem 1. Denote with (1-) formulation (1) without constraints (1i) and (1j) and with
LP (⋆) the linear relaxation of a generic formulation ⋆. Then LP(1−) can be arbitrarily bad,
i.e., LP(1)

LP(1−)
→ ∞ in the worst case.

As we will discuss in Section 5.3, if we use formulation (1) within a column generation scheme,

10



the pricing problem associated with variables x is extremely challenging because it involves
finding shortest paths on a graph with time-dependent costs. Therefore, we also evaluate an
alternative model in which we replace the truck-route variables x with three polynomial-sized
sets of variables. We present the resulting semi-compact formulation in Appendix C.

5 Column generation
Formulation (1a)–(1n), which we denote as the Master Problem (MP), uses two exponential
sets of routes: RD and RF. We call the corresponding variables x and y, taken together, the
columns of MP. Because sets RD and RF are too large to enumerate in practice, we use a
column generation approach initially considering reduced sets of variables. We initialise these
sets with a small number of columns, as explained in Section 4 of the supplemental material. The
resulting formulation is the Reduced Master Problem (RMP). We then consider the continuous
relaxation of RMP, known as the Reduced Relaxed Master Problem (RRMP), obtained by
replacing integrality constraints (1k)–(1n) with non-negativity constraints.

In the remainder of this section, we explain how to solve the continuous relaxation of MP,
denoted MPcont, by iteratively solving RRMP and generating new variables x and y which
improve the objective value. At each iteration of the column generation algorithm, we perform
three tasks:

1. We solve the RRMP and collect the dual values associated with the constraints involving
variables x and y. We denote with λ(n) the dual variable associated with constraint (n) of
the model. For example, λ(1g)

spc will refer to the dual variable associated with the inequality
(1g) indexed by s, p and c. We consider RRMP in its canonical form and therefore obtain
non-negative dual variables.

2. We solve a column-generation (pricing) subproblem SPx to find x variables with negative
reduced cost. Denoting with Cr the set of customers whose parcels are carried on a truck
in route r ∈ RD, the reduced cost of a variable xr is

cr + λ(1b) −
∑
c∈Cr

λ(1i)
c −

∑
c∈Cr

∑
p∈Pc

∑
s∈Sout

pc

s.t. r∈RD
spc

λ(1g)
spc . (2)

The reduced cost contains a fixed term (dual variable λ(1b)) and dual prizes for each
customer whose parcel is transported (dual variables λ

(1i)
c ) and for each bus which can

pick up the parcel at the in-stop (dual variables λ
(1g)
spc ).

3. We solve a second pricing subproblem SPy to find y variables with negative reduced cost.
Using again notation Cr to represent the set of customers whose parcels are carried by a
courier in route r ∈ RF, the reduced cost of a variable yr is

cr + λ(1c)
sr −

∑
c∈Cr

λ(1j)
c −

∑
c∈Cr

∑
p∈Pc

s.t. r∈RF
srpc

λ(1h)
srpc, (3)

where sr indicates the starting out-stop of route r. The reduced cost contains a fixed
term (dual variable λ(1c)) and dual prizes for each customer whose parcel is transported
(dual variables λ

(1j)
c ) and for each bus which can deliver the parcel to the out-stop (dual

variables λ
(1h)
srpc).

The algorithm terminates when there are no more negative reduced cost columns to generate.

11



Figure 3: Flowchart illustrating the restricted master heuristic proposed in this work.

We remark that subproblems SPx and SPy need not be solved in the given order; indeed,
in our implementation, we solve SPx only when SPy does not produce any negative reduced
cost column. During each pricing step, obtaining one column with a negative reduced cost
(regardless if it corresponds to a variable x or y) would be sufficient to improve the objective
value of the RRMP. However, because solving SPy is much faster, we first try to generate as
many y columns as possible. When there are no more negative reduced cost columns y, we try
solving SPx. If we find a column by solving SPx, we add this column to the RMP and we keep
iterating the process, i.e., we will solve SPy first in the next pricing iteration.

Although the proposed method can be used to find the optimal solution of MPcont, this task
is computationally demanding. Therefore, in Section 6.1, we describe algorithms to get high-
quality columns heuristically. Once we generate a sufficient number of columns, or when a time
limit hits, we solve RMP with a black-box Mixed-Integer Programming (MIP) solver to obtain
a primal solution for MP. The overall approach combining column generation and solving the
RMP as a MIP is known in the literature as “price-and-branch” or “restricted master heuristic”
(Sadykov et al. 2019). Figure 3 schematically resumes the main steps of the restricted master
heuristics. To prove the quality of such a solution, in Section 5.3, we devise dual bounds for
MP.

5.1 Column generation for truck routes
In this subsection, we explain how to solve the pricing subproblem SPx to generate truck routes
with negative reduced costs or prove that no such route exists. A truck route r ∈ RD is defined
by three elements: (i) a sequence of in-stops, without repetitions; (ii) a set of parcels to deliver
to each visited in-stop such that each parcel is delivered once and the total size of the parcels
does not exceed the truck capacity; (iii) the route start time from the CDC. Because of these
three elements, complete enumeration of truck routes is infeasible in practice even when they
only visit a limited number of in-stops.

The route start time is particularly important: because trucks are not allowed to wait at
stops, the start time determines the visit time of all in-stops. Moreover, the time at which
the truck deposits parcels at a stop is crucial: a truck should not arrive too early or too late.
If the truck arrives too early, the parcels will not be able to use some buses, which might be
associated with large dual prizes (recall that parcels can stay a maximum of Wmax units of
time at an in-stop). Analogously, if the truck arrives too late, the parcels will miss some buses
with a possibly high dual prize. Contrast this with, e.g., vehicle routing problems with time
windows in which arriving late is forbidden or penalised, but vehicles can arrive early and wait

12



CDC

c1

c2

c3

s1 ∈ Sin

c3

c1

s2 ∈ Sin

Figure 4: Small example of graph G with two in-stops and three customers. Blue arrows denote
a possible truck route.

at customer locations.

In what follows, we describe two different approaches to solve SPx. They use an underlying
graph and solve special types of shortest-path problems with a dynamic programming labelling
algorithm. The main difference between them is in how they model time.

5.1.1 Labelling algorithm with a time-dependent cost function

We start by describing the directed graph G = (V,A) used by the labelling algorithm. The
vertex set is V = {o} ∪ {(s, c) : c ∈ C, s ∈ S in

c } and it contains the CDC (o) and the set of all
pairs of in-stops and customers (s, c), taking care to add only those pairs which are compatible
(see Appendix A for a formal definition of S in

c ). The arc set contains three types of arcs. First,
arcs from o to all other vertices and from the other vertices to o. Second, arcs from vertices
(s, c) to (s′, c′) such that s ̸= s′ and c ̸= c′. These arcs correspond to the truck moving from
in-stop s, where it unloads parcel c, to in-stop s′, where it unloads parcel c′. Third, within-stop
arcs from vertices (s, c) to vertices (s, c′). These arcs indicate that the truck unloads both
parcels c and c′ at in-stop s. Because there is no inherent order in which parcels are unloaded,
we can drastically reduce the number of arcs by defining an arbitrary ordering of the parcels
(say c1, . . . , c|C|) and only adding arcs from (s, ci) to (s, cj) if j > i. Figure 4 shows a small
example in which rectangles correspond to in-stops and orange circles correspond to vertices of
type (s, c). The square vertex is the CDC, while blue arrows represent a possible truck route
which delivers parcels for c1 and c2 at stop s1, and for c3 at stop s2.

A path in G can only define two of the three elements required to identify a truck route: the
sequence of in-stops and the sets of parcels delivered to each in-stop. Therefore, a route r ∈ RD

is determined by both a suitable path in G and a start time from the CDC. To include the
time dimension, we first associate each arc a =

(
(s, c), (s′, c′)

)
∈ A (s ̸= s′) with a traversing

time ta equal to the travel time from the origin in-stop to the destination in-stop, lss′ , plus the
service time Ts′ . If origin and destination in-stops coincide (s = s′), then the traversing time
is ta = 0. The traversing time of arcs arriving at o only includes the travel time (ta = lso). We
then define the benefit of arriving at a vertex (s, c) ∈ V at time t as

νsc(t) = λ(1i)
c +

∑
p∈P in

sc s.t.
tsp−Wmax≤t≤tsp

λ(1g)
cps .

13



Interval Ips :=
[
tsp −Wmax, tsp

]
defines all time instants when a parcel ready for pick-up at stop

s can be loaded onto bus p. Finally, we associate with a path P = (o, (s1, c1), . . . , (sk, ck), o) of
G its reduced cost function

CP (t) = cr + λ(1b) −
k∑

i=1

νsici(t̂i(t)), (4)

where t is the start time from the CDC, cr is the cost of the truck route associated with path
P and t̂i is the truck arrival time at in-stop si, defined as

t̂i(t) = t+ t(o,(s1,c1)) +
i−1∑
j=1

t(sj ,cj),(sj+1,cj+1).

CP (t) is a step-wise non-convex function and, as such, needs tailored dominance rules, as
explained in the following.

Finding a truck route of negative reduced cost corresponds to finding a path P in G such that its
corresponding route is feasible and that CP (t) < 0 for at least one start time t. To accomplish
this task, we use a labelling algorithm which associates a label LP with each partial path P
from the CDC to a vertex (s, c) ∈ V . The label has the following components: vP = (s, c)
is the end vertex of the path; SP ⊆ S in is the set of in-stops which can still be visited when
departing from vP ; CP ⊆ C is the set of customers whose parcels can still be delivered when
departing from vP ; τP ≥ 0 is the sum of traversing times of the arcs used in the path; QP ≥ 0
is the spare capacity on the truck when departing from vP ; CP : R+

0 → R is the reduced cost
function associated with P , obtained by truncating the sum in (4) to the end vertex vP .

As shown in Section 1 of the supplemental material, to get a valid dominance rule, the cost
function associated with each partial path has to be calculated with respect to the arrival time
at the end vertex vP . To this end, we introduce function C̄P (t) representing the reduced cost
of path P when the truck arrives at the end vertex vP at time t and we define C̄P (t) = ∞ for
all t < τP . By contrast, Cp(t) is a function of the start time from the CDC. Because the arrival
time at vP is completely determined by the start time of the route, one can always recover the
value of CP (t) from that of C̄P (t) and vice-versa.

When extending a path P to a new vertex (s′, c′) ∈ V along arc a ∈ A, the label associated
with the new path P ′ has the following components:

vP ′ = (s′, c′), SP ′ = SP \ {s′}, CP ′ = CP \ {c′},
τP ′ = τP + ta, QP ′ = QP − qc′ , C̄P ′(t) = νs′c′(t) + C̄P (t− ta) + ca,

where ca is the routing cost associated with arc a. Figure 5 shows an example of how cost
function C̄P gets updated to C̄P ′ using benefit function νs′c′ . In the figure, C̄P ′ and νs′c′ are
represented as functions of t, i.e., the arrival time at the new end vertex vP ′ ; C̄P is represented
as a function of t− ta, i.e., the arrival time at the old end vertex vP .

The following proposition, proven in supplemental material’s Section 1, establishes a dominance
relation allowing to discard labels which cannot possibly be extended to an optimal complete
path, i.e., to a path with the lowest possible reduced cost.

Proposition 1. Given two paths P1 and P2, and their corresponding labels LP1 and LP2,
ending at the same vertex vP1 = vP2, LP1 dominates LP2 if: SP2 ⊆ SP1, CP2 ⊆ CP1, QP2 ≤ QP1,
C̄P1(t) ≤ C̄P2(t) for all t ≥ τP2, and at least one condition holds strictly. We remark that the
condition on C̄ implies that τP1 ≤ τP2.

14



t− ta

t

3

2

1

0

−1

−2

−3

−4

νs′c′(t)

C̄P (t− ta)

C̄P ′(t)

ca

t1 t2 t3 t4 t5

t1 − ta t2 − ta t3 − ta t4 − ta t5 − ta

Figure 5: Example of updating cost function C̄P to C̄P ′ using the benefit function νs′c′ , during
label extension. Time t at the end-point of P ′ is on the bottom horizontal axis. Time t− ta at
the end-point of P is on the top horizontal axis.

The dominance rule presented in Proposition 1 implies a point-to-point pairwise comparison of
the two labels. Indeed, contrary to standard scalar costs, the dominance should be checked for
any value of the time-dependent cost function (4). A similar dominance rule was proposed by
Tagmouti, Gendreau and Potvin (2007) for a time-dependent arc routing problem. However,
the authors do not specify how they implement dominance checking and calculate the cost of a
path with respect to the starting time from the depot, which leads to a non-valid dominance rule
in our case, as discussed in Section 1 of the supplemental material. More recently, Baum et al.
(2020) and Klein and Schiffer (2022) also proposed a labelling algorithm for a subproblem with
a time-dependent piece-wise linear convex function. Their pairwise dominance rule is similar
to the one proposed in Proposition 1. Moreover, Klein and Schiffer (2022) use a set-based
dominance rule, where a label can be jointly dominated by a set of labels. Preliminary tests
showed that set-based dominance did not improve the performance of our algorithm.

5.1.2 Labelling algorithm with a scalar cost

The dual prizes collected at the vertices of G only change, as a function of the arrival time at
the in-stop, at the intersection of the time intervals Isp defined in Section 5.1.1. In other words,
the dual prizes change at time instants when a bus becomes available or is no longer available
to pick up parcels. Therefore, for each in-stop, it is possible to partition the time horizon into
intervals where the dual prizes are constant.

Consider, for example, the instance presented in Figure 4. Assume that buses p1, p2, p3 serve
in-stop s1, and buses p4, p5 serve in-stop s2. A possible time horizon partitioning for both
in-stops is depicted in Figure 6; the left part of the figure refers to s1 and the right one to s2.
The horizontal lines in the top part of the picture represent time intervals Isp. The line at the
bottom is the time horizon, partitioned into intervals wsℓ, where s ∈ S in is the in-stop and ℓ is
the index of the interval (ℓ ∈ {1, . . . ,Λs}).

As a consequence of the above observation, we propose an alternative approach to solving SPx

as a shortest path problem where, contrary to the problem described in Section 5.1.1, the cost
is no longer a time-dependent function but a scalar. We create a directed graph H = (W,B)

15



In-stop s1 ∈ Sin

p1 ∈ P11,P12
I11

p2 ∈ P11,P12,P13

I12

p3 ∈ P12,P13
I13

w11 w12 w13 w14 w15

In-stop s2 ∈ Sin

p4 ∈ P21
I24

p5 ∈ P23
I25

w21 w22 w23

Figure 6: Time intervals wsℓ for the instance presented in Figure 4. Buses p1, p2, p4 are com-
patible with customer c1; p1, p2, p3 with customer c2; and p2, p3, p5 with customer c3.

CDC

c1 c2
w11

c1 c2 c3
w12

c1 c2 c3
w13

c1 c2 c3
w14

c2 c3
w15

s1 ∈ Sin

c1
w21

c1 c3
w22

c1 c3
w23

s2 ∈ Sin

Figure 7: Small example of graph H with two in-stops and three customers. Buses p1, p2, p3
serve in-stop s1; buses p4, p5 serve in-stop s2. Time intervals w are as in Figure 6. Blue arrows
denote a possible truck route.

16



with vertex set:

W = {o} ∪
{
(s, c, ℓ) : c ∈ C, s ∈ S in

c , ℓ ∈ {1, . . . ,Λs}, ∃p ∈ Pcs s.t. Isp ∩ wsℓ ̸= ∅
}
.

Each vertex (s, c) of V is copied multiple times in W : it gets one copy for each time interval
wsℓ during which at least one bus can pick up the parcel of c at s. The arc set B contains three
types of arcs. First, arcs from o to all other vertices, and from the other vertices to o. Second,
arcs from vertices (s, c, ℓ) to vertices (s′, c′, ℓ′) such that s ̸= s′ and c ̸= c′. Third, within-interval
arcs from vertices (s, c, ℓ) to vertices (s, c′, ℓ), indicating that the truck delivers both parcels
for c and c′ at s during interval ℓ. Similar to what was noted in Section 5.1.1, the number of
such arcs can be drastically reduced through an arbitrary ordering of the customers. Figure 7
shows the same instance and route of Figure 4, but on graph H with time intervals defined as
in Figure 6. The route delivers c1’s and c2’s parcels at in-stop s1 during time interval w11, and
c3’s parcel at in-stop s2 during time interval w23. Therefore, the only possible continuation of
the parcels’ journeys is on bus p1 for c1 and c2 and on bus p5 for c3.

The labelling algorithm used to find truck routes of negative reduced cost (or prove that none
exists) on graph H is similar to classical algorithms to solve the resource-constrained shortest
path problem. We give a detailed description of it in Appendix B.1. Here, we only note that
using this approach, we no longer need to associate a cost function with each label. Because
the vertices already encode the information about buses compatible with a given route, we can
use scalar costs. The trade-off is that graph H is much larger than graph G and each vertex
(s, c, ℓ) has an associated time window wsℓ during which the vertex can be visited. We will
introduce speed-up techniques to overcome the challenges of solving SPx both on G and H in
Section 6.

5.2 Column generation for courier routes
We now explain how to solve the pricing subproblem SPy. We first remark that SPy is decom-
posable by out-stop. The lowest reduced cost of any courier route can be written as

min
s∈Sout

min
r∈RF

s

{
cr + λ(1c)

s −
∑
c∈Cr

λ(1j)
c −

∑
c∈Cr

∑
p∈Pc

s.t. r∈RF
spc

λ(1h)
spc

}
,

and all inner minimisation problems are independent of each other.

For a given out-stop s ∈ Sout and customer c ∈ Cs, the dual prizes λ
(1h)
spc which a courier route

can collect only depend on the route start time from s because this time determines which
buses can deliver the customer’s parcel. Using the same key ideas from Section 5.1.2, we can
partition the time horizon into intervals in which these dual prizes stay constant. Keeping the
same notation, we denote these intervals with wsℓ (w ∈ {1, . . . ,Λs}). We then decompose SPy

both by out-stop and by time interval, and we let SPy(s, ℓ) be the subproblem associated with
s ∈ Sout and ℓ ∈ {1, . . . ,Λs}, in which we use wsℓ as the out-stop time window limiting the
possible start times of the courier routes. Considering customer time windows, the capacity
of the courier, and that each customer must be visited at most once, we model SPy(s, ℓ) as
an elementary shortest-path problem with time windows. Appendix B.2 presents a labelling
algorithm to solve SPy(s, ℓ).

5.3 Dual bounds
A straightforward way to obtain a dual bound for MP is to solve MPcont to optimality, i.e.,
until there are no more negative reduced cost columns. In practice, this approach only works for

17



small instances. For medium-size instances, the column generation procedures do not usually
terminate within the time limit of one hour that we impose in computational tests. For large
instances, even solving one iteration of the column generation algorithm may take more than
one hour; in particular, solving a single pricing problem SPx is computationally prohibitive.
Pricing problem SPy, on the other hand, is usually solved in less than a second. This is mainly
due to the fact that we solve an independent subproblem SPy(s, ℓ) for each out-stop s and each
time interval ℓ. Hence, the size of these subproblems remains tractable even for large instances.
Additionally, courier capacity is usually limited, preventing sets RF from growing large.

We can speed up the solution of the pricing problems by approaching them heuristically (see
Section 6.1). In this case, however, we can no longer guarantee that all remaining columns
have a non-negative reduced cost and, thus, that we have solved MPcont. Therefore, in the
following, we introduce an alternative dual bound for the 3T-DPPT, which can be computed
off-line when it is intractable to solve SPx or SPy. In Section 3 of the supplemental material,
we also describe a way to obtain an on-line Lagrangian bound while running the restricted
master heuristic.

We obtain the off-line bound considering the relaxation of the 3T-DPPT in which we ignore
the second echelon and solve the first- and third-echelon problems separately. In particular,
we no longer specify which buses transport parcels from in-stop to out-stop but rather devise
truck and courier routes independently. The resulting solution is likely unfeasible: for example,
it can involve a truck delivering a parcel at in-stop s1 and a courier delivering the same parcel
starting from out-stop s2, even when there is no bus connecting s1 and s2. Furthermore, we
relax the in-stop elementarity and no-wait constraints from the first-echelon problem: we allow
trucks to visit the same stop multiple times and to wait at a stop before delivering parcels.
In the following, we describe the proposed solution approach for the first- and third-echelon
problems.

With the above relaxations, the first-echelon problem becomes a variant of the Generalised
Vehicle Routing Problem with Time Windows (GVRPTW). The GVRP is an extension of the
classical Vehicle Routing Problem in which the customers are partitioned into clusters. Vehicles
must only visit one customer in each cluster, and, in doing so, they deliver the entire cluster
demand. In the GVRPTW, additionally, each customer can be visited only within a given time
window.

Consider the graph G introduced in Section 5.1.1, in which each vertex other than the CDC
corresponds to a pair of in-stop and customer. We partition these vertices grouping together
those that correspond to the same customer. Because a customer’s parcel must be delivered
at most once, it is sufficient to visit only one vertex in each cluster; this vertex determines the
in-stop used to deliver the parcel. We obtain time windows for each vertex (s, c) considering
the delivery time window for customer c, the possible out-stops which can handle c’s parcel,
and the possible buses which can carry the parcel from s to these out-stops. The corresponding
time window Θsc is defined in Appendix A. In a GVRPTW solution, the same vehicle can visit
two vertices referring to the same in-stop at any point in its route. Thus, we cannot guarantee
the elementarity of the in-stops. Section 3 of the supplemental material details the solution
approach used to solve the GVRPTW.

The third-echelon problem, on the other hand, is a Multi-Depot Vehicle Routing Problem with
Time Windows (MDVRPTW). The capacity constraints of the couriers considerably limit the
number of customers served by the same route. Therefore, we solve the MDVRPTW using a
straightforward extended formulation enumerating all feasible routes.

18



6 Other elements of the column generation algorithm
In this section, we describe the auxiliary components of the column generation algorithm. We
will focus on subproblem SPx because it is, in practice, much harder than SPy. Section 6.1
describes how to speed up the solution of SPx using graph sparsification heuristics. We obtain
a further speed-up by considering the order in which we extend and dominate labels, as ex-
plained in Section 6.2. Finally, in Section 6.3, we explain how to post-process truck routes to
exploit eventual residual capacity. Section 4 of the supplemental material describes the greedy
algorithm we use to generate an initial set of columns.

6.1 Heuristic column generation
We speed up the generation of columns in subproblem SPx, reducing the number of arcs in
graphs G and H, respectively introduced in Sections 5.1.1 and 5.1.2. We start by describing the
techniques used on graph G. Recall that, for a given in-stop s, we only generate the within-stop
arc from (s, ci) to (s, cj) if i < j in an arbitrary ordering of the customers (c1, . . . , c|C|). In our
heuristic arc reduction, we sort the customers within the same in-stop by increasing (negative)
maximum reduced cost mrcs(c), given by

mrcs(c) = max
t

{
νsc(t)

}
= max

t

{
λ(1i)
c +

∑
p∈P in

sc s.t.
tsp−Wmax≤t≤tsp

λ(1g)
cps

}
.

Then, for each node (s, c), we only keep the within-stop arc to (s, c′), where c′ is the customer
following c in the given order, over those customers not yet visited by the route being construc-
ted. In practice, this technique forces a truck at an in-stop to deliver the parcel of the k-th
best customer by reduced cost only if it also delivers the parcels of the best, second-best, …,
(k− 1)th-best customers for the stop, either at the current or at previous stops. We denote this
technique as path heuristic.

We use an analogous procedure to reduce the number of arcs in the graph H. Given an in-stop
s and a time interval ℓ, we sort customers by increasing (negative) reduced cost, expressed in
this case as

λ
(1i)
c′ +

∑
p∈Ps′c′ s.t.
Is′p∩ws′ℓ′ ̸=∅

λ
(1g)
s′pc′ .

We only generate arcs from (s, c, ℓ) to the (s, c′, ℓ), with c′ immediately following c in the given
order.

6.2 Using checkpoints in truck columns labelling
Graph G of Section 5.1.1 contains O(|S in|2|C|2) “travelling” arcs of type

(
(s, c), (s′, c′)

)
because

each pair (s, c) of in-stop and customer is connected to each other pair (s′, c′) (when s ̸= s′

and c < c′). In this section, we explain how to reduce these arcs to O(|S in|2 + |S in| · |C|), at
the expense of adding O(|S in|) vertices. Because in practical applications |S in| ≪ |C|, this
considerably reduces the number of arcs in G and speeds up the labelling algorithm to solve
SPx. The main idea is to add to each in-stop s two “checkpoint” vertices denoted v−s (entry
point) and v+s (exit point). We remove from the graph the travelling arcs described above, and
we replace them with: (i) O(|S in|2) new travelling arcs of type (v+s , v

−
s′ ) for any pair of in-stops

s ̸= s′; (ii) O(|S in| · |C|) entry-to-customer arcs from v−s to (s, c) for all c ∈ Cs; (iii) O(|S in| · |C|)
customer-to-exit arcs from (s, c) to v+s for all c ∈ Cs. Figure 8 (left) shows the same instance

19



CDC

c1

c2

c3

s1 ∈ Sin

v−s1 v+s1

c3

c1

s2 ∈ Sin

v+s1 v−s2

CDC

c1 c2
w11

c1 c2 c3

w12

c1 c2 c3
w13

c1 c2 c3
w14

c2 c3
w15

v−s1 v+s1

s1 ∈ Sin

c1
w21

c1 c3
w22

c1 c3

w23

v+s2 v−s2

s2 ∈ Sin

Figure 8: Introduction of checkpoints in graph G of Section 5.1.1 (left) and in graph H of
Section 5.1.2 (right).

and route as Figure 4 after the introduction of checkpoints. The same idea can be applied to
graph H introduced in Section 5.1.2, as depicted in Figure 8 (right). For this graph, in addition
to checkpoints for each stop, we add analogous checkpoints for each interval wsℓ inside the stop.

6.3 Post-processing of columns
We post-process the truck routes generated when solving subproblem SPx to exploit eventual
spare capacity. In the following, we give a brief description of the post-processing algorithm
for a route r ∈ RD with its associated start time. The algorithm consists of two phases.

First, we order the set of customers not covered by r in ascending order of ratio λ
(1i)
c /qc. Then,

we go through the in-stops visited along route r, and we deliver at each of them as many
additional parcels as possible in the given order. The truck can deliver a parcel at a stop if
there is at least one bus compatible with that parcel, if there is enough capacity on the truck,
and if the parcel is not already included in r. Performing this post-processing step does not
increase the route’s cost but makes it cover more customers.

In the second phase, we use a procedure which might increase the route’s cost. We first compute,
for each in-stop s not visited by r, the best dual prize we could collect if we visit s and deliver
parcels using the same criterion as in the first phase. Because the best dual prize depends on
the position in which we insert s in the route, we consider all possible positions. For each stop
s, giving dual prizes larger (in absolute value) than the detour cost, we create a copy of r in
which we insert stop s. We repeat this procedure until no stop can be inserted.

20



7 Computational experiments
In this section, we present the results of a wide range of computational experiments. First, in
Section 7.1, we assess the trade-offs associated with the different subproblem solution methods
we presented. Second, in Section 7.2, we compare three possible formulations for the 3T-DPPT.
Finally, in Section 7.3, we compare our heuristic based on column generation with the only
other comparable approach from the literature, i.e., the decomposition heuristics of Mandal
and Archetti (2023).

We ran our experiments on a cluster with Intel Xeon CPUs running at 2.4GHz. Each run was
limited to using one core and 32GB of memory. The RRMP solver was Cplex version 20.1,
used through its C++ API with default parameters. We generated the instance set following the
same procedure as Mandal and Archetti (2023), which uses the instance generator developed
by Delle Donne, Alfandari et al. (2023). The dataset contains ten instances for each number of
customers in {20, 25, 30, 40, 50}, for a total of 50 instances. Each instance contains between 21
and 32 stops and between 45 and 60 buses. All instances and results are available in a GitHub
repository (Delle Donne, Santini and Archetti 2024).

Our default time limit is one hour for all algorithms, as this is an appropriate choice for an
operational problem with a planning horizon of one day or less. When solving the extended and
semi-compact formulations, we reserve a minimum time of 5 minutes for the final step which
solves the RMP with the generated columns. Therefore, if the column generation phase is not
over after 55 minutes, we stop it and start this final MIP. We use the one-hour time limit in all
experiments described in Section 7.1 and Section 7.2. In Section 7.3, we compare our approach
with the decomposition heuristic of Mandal and Archetti (2023) that uses a three-hour time
limit. To make a fair comparison, we use the same time limit and reserve a minimum time of
one hour for the final MIP.

7.1 Ablation study
In this section, we present the results of two ablation studies in which we disable each of
the enhancements proposed in Section 6. We show that disabling any of these enhancements
degrades the algorithm’s performances, thus justifying their use. The pricing method used
in the first study is the labelling algorithm with a time-dependent cost function introduced in
Section 5.1.1 and denoted CostFunction. In the second study, we use the labelling algorithm
with a scalar cost that we introduced in Section 5.1.2; we denote it ScalarCost.

We consider six configurations in each study. In four of them, we selectively disable one of the
following enhancements:

1. The heuristic pricing strategy presented in Section 6.1.

2. The subproblem graph transformations using checkpoints, presented in Section 6.2.

3. The post-processing phase introduced in Section 6.3.

4. The first-echelon column pool initialisation strategy described in Section 4 of the sup-
plemental material. This strategy uses a greedy algorithm to generate a set of initial
first-echelon columns. When it is disabled, we instead initialise the column pool with
dummy columns as explained in Section 4 of the supplemental material.

In the other two configurations we respectively enable and disable all the enhancements. Table 2
shows the ablation study’s results. Each cell shows the average result over the set of 50 instances.

Columns “Count” report the number of instances for which the method obtained a feasible

21



CostFunction ScalarCost

Configuration Count Gap Time Count Gap Time
All enhancements 49 20.0% 2756 49 19.7% 586
No heuristic pricing 48 20.9% 3565 48 21.2% 3564

No checkpoints 48 21.5% 3571 48 20.7% 130
No postprocessing 47 20.5% 2995 49 20.0% 667
No initial heuristic 44 20.2% 2487 44 19.7% 475

No enhancements 40 22.4% 3559 40 22.0% 3558

Table 2: Summary of the ablation study results.

solution. Columns “Gap” list the average gap between the feasible solution and the best known
lower bound for the instance. The average gap is calculated over the subset of instances for
which every configuration has found a feasible solution. For CostFunction, these are the 40
instances for which “No enhancements” finds a feasible solution. For ScalarCost, although
each configuration finds a feasible solution for at least 40 instances, there are only 39 instances
for which all configurations find a feasible solution. In particular, “No enhancement” solves an
instance that the other configurations do not. Therefore, the ScalarCost gaps are computed
on 39 instances. This allows a fair comparison among the different configurations, as in the
cases in which no solution is found, no appropriate gap can be considered. Columns “Time”
report the average computing time in seconds.

Table 2 shows that enabling all enhancements consistently produces the best results in terms of
number of feasible solutions found and average gaps. The configuration in which all enhance-
ments are enabled almost always finds a strictly larger number of feasible solutions compared
to the other configurations. The only exception occurs for ScalarCost, in which the “All
enhancements” and “No postprocessing” configurations are tied in terms of solutions found
but, still, the “All enhancement” configurations gives a lower gap and a shorter runtime. A
remarkable difference on the results can be observed when none of the enhancements is enabled.
In both studies, the number of feasible solutions found decreases from 49 to 40, the average
gaps increase, and the runtimes are considerably longer.

Selectively disabling some of the enhancements results in shorter runtimes. The most striking
example is in the ScalarCost study, where disabling checkpoints reduces the average runtimes
from 586 to 130 seconds. However, the number of feasible solutions found decreases and the
average gap increases. Therefore, because our main objective is to provide feasible solutions of
good quality, we decided to keep all enhancements enabled in the computational experiments
presented in the following sections.

7.2 Formulation comparison
In this section we compare the three proposed formulations for the 3T-DPPT, namely:

1. The extended formulation with two exponential sets of variables presented in Section 4.
We test two different algorithms for this formulation: the one using the time-dependent
cost-function (Section 5.1.1) and the one using scalar costs (Section 5.1.2). As we did in
Section 7.1, we denote these two algorithms CostFunction and ScalarCost, respect-
ively.

2. The semi-compact formulation with one exponential set of variables described in Ap-
pendix C and denoted with “SCF”.

22



0 10 20 30 40 50 60 70 80 90 100

Gap w.r.t. best bound (%)

0

10

20

30

40

50

In
st

an
ce

s
so

lv
ed

w
it

h
in

th
e

gi
ve

n
ga

p

CostFunction

ScalarCost

Semi-compact Formulation (SCF)

Compact Formulation (CF)

Figure 9: Performance profiles of the four tested algorithms.

3. A compact formulation initially introduced by Mandal and Archetti (2023). In our exper-
iments, we amended this formulation to forbid trucks from waiting at stops indefinitely.
The resulting model is presented in Section 6 of the supplemental material. This formu-
lation is denoted “CF”.

Figure 9 presents the performance profiles of the four algorithms CostFunction, Scalar-
Cost, SCF, and CF. The x-axis reports the gap with respect to the best dual bound, i.e., the
tightest among all the dual bounds produced during the experimental campaign. These bounds
are obtained by the following techniques: (i) running the column generation algorithm solving
the pricing subproblem for the x variables using the MIP model described in Section 2 of the
supplemental material (and the subproblem for the y variables to optimality) and applying
the Lagrangian bound described in Section 3 of the supplemental material; (ii) computing the
decomposition bound described in Section 5.3; (iii) solving the semi-compact or the compact
formulation and taking the best dual bound reported when the solver terminates. For any
given gap on the x-axis, the y-axis reports the number of instances solved within the gap. Each
curve corresponds to one of the four algorithms (dark green for CostFunction, light green
for ScalarCost, orange for SCF, and red for CF). The curves for SCF and CF do not reach
the top-right corner of the figure because these algorithms find feasible solutions for 26 and
22 instances only. On the other hand, CostFunction and ScalarCost produce a feasible
solution for all instances but one. On the bottom-left part of the chart, the curves relative
to SCF and CF dominate those relative to CostFunction and ScalarCost. Indeed, for
small instances, SCF and CF find optimal or almost optimal solutions. For larger instances,
however, CostFunction and ScalarCost are mostly the only two methods yielding primal
solutions at all. We finally note that, although no column generation method dominates the
other completely, ScalarCost is often slightly better than CostFunction.

Figure 10 provides disaggregated results. The number of customers is reported on the x-axis,
with the instances first sorted by the number of customers and then by the gap provided by the
best method; the y-axis shows the percentage gap. The numbers above the chart count how
many methods produced a feasible solution. This same information is also conveyed visually:
a darker background corresponds to an instance for which fewer algorithms produce a feasible
solution. Finally, Table 3 summarises the number of instances solved by each method. We do

23



Number of customers

0

20

40

60

80

100

G
ap

w
.r

.t
.

b
es

t
b

ou
n

d
(%

)

4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 4 4 4 3 4 4 2 3 2 2 2 2 0 2 3 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2

Number of methods providing solutions

40 5020 25 30

CostFunction ScalarCost Semi-compact Formulation (SCF) Compact Formulation (CF)

Figure 10: Disaggregated results for the four tested algorithms.

# of customers
Method 20 25 30 40 50 Total

CF 10 9 3 0 0 22
SCF 10 10 3 2 1 26

CostFunction 10 10 9 10 10 49
ScalarCost 10 10 9 10 10 49

Table 3: Number of instances in which each method finds a feasible solution. The instances are
grouped by number of customers.

not report average solution times of SCF and CF because, except for a few exceptions (when
the gap is zero in Figure 9), all other instances reach the 1-hour time limit. We recall that the
average solution times of CostFunction and ScalarCost can be found in Table 2.

Overall, we highlight the fact that, despite the difficulty of the problem, column generation
methods that use two exponential sets of variables can find feasible solutions for most instances.
By contrast, the CF and SCF fail to do so for most instances with 30 or more customers. In
particular, SCF finds a feasible solution for only three instances with 40 or more customers and,
in two of these three cases, with much larger gaps than CostFunction and ScalarCost.

7.3 Comparison with a heuristic from the literature
In this section, we compare the performance of our column-generation-based methods against
the only other comparable approaches in the literature, i.e., the compact formulation (CF) and
the decomposition heuristic (DH) of Mandal and Archetti (2023). In their paper, the authors
devise several heuristics, and their computational experiments show that none dominates the
others. Therefore, we compare the best solution obtained by any of the heuristics in (Mandal
and Archetti 2023) with the best solution obtained by our proposed methods. This detailed

24



comparison is presented in Section 5 of the supplemental material.

As mentioned at the beginning of Section 7, in these experiments, we use the same time limit
as Mandal and Archetti (2023), i.e., three hours. For the SCF, CostFunction, and Scal-
arCost methods, we set a maximum time of two hours for the column generation phase and,
therefore, a minimum of one hour for the final MIP. We remark that the ratio of these time
limits (two hours and one hour) is not the same as the one used in Section 7.1 (55 minutes and
five minutes). However, our column generation methods generate a significant number of high-
quality columns already during the first two hours. In preliminary experiments, we noticed that
extending the column generation timeout gives diminishing returns in terms of column quality
and increases the size of the final MIP. This increased size and the reduced MIP timeout often
result in sub-optimal solutions for the final MIP and degrade the overall performance.

We recall that Mandal and Archetti (2023) allow trucks to wait at in-stops, and we do not.
Therefore, the problems being solved are slightly different, and the solution space of Mandal
and Archetti’s formulation is larger than ours. This implies that the problem solved by the
decomposition heuristics may admit optimal solutions with lower objective values than in our
formulation. Both Mandal and Archetti’s instances and the instances we used in Section 7.1
and Section 7.2 were produced using the same generator and are structurally similar. Indeed,
the only differences are in whether trucks are allowed to wait at in-stops and in the size of the
largest instances. Our instances contain up to 50 customers, while Mandal and Archetti use
instances with up to 80 customers.

Table 4 (left) reports the results obtained on the 24 instances tested in Mandal and Archetti
(2023). Column “Instance” reports the instance number. Column “CF” lists the percentage
objective cost improvement of the best solution found by our column-generation-based methods
compared with the compact formulation. Analogously, column “DH” reports the percentage
improvement compared with the best of Mandal and Archetti’s decomposition heuristics. An
empty cell indicates that the CF or DH methods could not find a feasible solution for the
instance. The summary table on the right of Table 4 reports the number of instances in which
the best solution found by one of our column-generation-based methods has better, worse or
the same cost as CF, DH and the best solution between CF and DH.

Compared with DH, our algorithm found better solutions in 21 out of the 24 instances. The
average improvement in these 21 instances is 8.38%, reaching more than 16% in the best case.
We tie on one instance (number 1), for which our method finds an optimal solution; optimality
is proven because CF terminates within the time limit and finds the same solution. We find
a worse solution in only two instances (13 and 17). However, by inspecting instance 13, we
verified that DH’s best solution includes a route in which the truck waits at an in-stop for a large
part of the planning horizon. Therefore, DH’s solution is infeasible for our formulation. Our
solutions are never worse than those produced by CF. We get the same result on six instances
and improve the solution for the other 18, including the 13 instances for which CF fails to find
a feasible solution.

To summarise, when we compare our results against the best result between CF and DH for
each instance (last column of the right table in Table 4), we improve in 16 out of 24 instances,
tie in six and find worse solutions in two cases. In one of these (instance 13), DH’s solution is
considered infeasible to our methods and in the other (instance 17) the cost difference is less
than 1%.

25



Improvement% Improvement%
Inst CF DH Inst CF DH

1 0.00 0.00 13 — -5.39
2 0.00 5.43 14 — 6.37
3 0.00 8.37 15 — 13.96
4 0.00 5.13 16 — 9.04
5 3.94 8.68 17 — -0.52
6 0.00 12.36 18 — 3.86
7 7.61 11.19 19 — 7.32
8 0.00 8.54 20 — 7.49
9 6.00 10.03 21 — 10.96
10 — 5.85 22 — 16.57
11 5.68 11.27 23 — 6.06
12 10.41 4.25 24 — 4.05

Comparison vs.
CF DH Best

# Better cost: 18 21 16
# Worse cost: 0 2 2
# Same cost: 6 1 6

Table 4: Left: relative improvements of the solutions obtained by our methods on the 24
instances from Mandal and Archetti 2023, compared with CF and DH. Right: summary of the
number of instances in which our methods find a solution with a better, worse, or with the
same cost as CF, DH and the best between the two.

8 Conclusions
In this paper, we develop a decision-support tool for a last-mile delivery system that uses
spare capacity on public transport to bring parcels from an outside distribution centre into the
city. In particular, we proposed extended formulations for the Three-Tier Delivery Problem
using Public Transportation (3T-DPPT), a problem already studied by Mandal and Archetti
(2023). Two characteristics set the main extended formulation apart from most other models
from the literature: first, the presence of two exponential sets of variables giving rise to two
pricing subproblems; second, that one of these subproblems involves finding the shortest path
on a graph with time-dependent costs. The complete price-and-branch algorithm involves
several components. Apart from the algorithms to solve the pricing problems to optimality,
we implemented an initial column generation heuristic, a column postprocessing algorithm, a
sparsification technique to accelerate pricing, and dual bounding approaches based on problem
decomposition and on the Lagrangian bound. Computational tests on benchmark instances
show that column generation applied to the extended formulations is a viable approach to
obtain good primal solutions in less than one hour of computing time.

While our method produces high-quality primal solutions, more work is needed to devise better
dual bounds. In small instances, we observed that the continuous relaxation of the extended
formulation provides tight bounds. In larger instances, however, solving the continuous relaxa-
tion to optimality is prohibitive because of the high computation time required by exact pricing.
The other bounding techniques we propose (based on decomposition and the Lagrangian bound)
do not provide equally good dual bounds.

The problem tackled in this work resembles classical 3-echelon vehicle routing problems. How-
ever, it has the particular characteristic that the transportation means used in the second
echelon have fixed routes and schedules which cannot be changed. The problem is also con-
nected with vehicle routing problems with synchronisation, in which the routes must meet at
some common point in time and/or space. Following these connections with classical prob-
lems, adapting or generalising our method to these problems is an interesting future research

26



direction.

Acknowledgements
We are extremely grateful to the authors of (Pessoa et al. 2023) for sharing with us their
VrpSolver implementation of the GVRP. This work was partially funded by the CY Initiative
of Excellence (grant “Investissements d’Avenir” ANR-16-IDEX-0008). The work of Alberto
Santini has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska Curie grant agreement number 945380. We thank
three anonymous reviewers whose comments helped improving a former version of the paper.

References
Alfonso, Viviana et al. (Jan. 2021). E-commerce in the pandemic and beyond. Bulletin 36. Bank

for International Settlements. url: https://web.archive.org/web/20210126163639/
https://www.bis.org/publ/bisbull36.htm (visited on 26/01/2021).

Antkowiak, Tifany (Jan. 2018). ‘Le projet de tram fret est arrêté à Saint-Étienne’. In: France
Bleu. url: https://web.archive.org/web/20180217163752/https://www.francebleu.
fr/infos/transports/le- projet- de- tram- fret- est- arrete- a- saint- etienne-
1514458535 (visited on 17/02/2018).

Archetti, Claudia and Luca Bertazzi (2021). ‘Recent challenges in Routing and Inventory Rout-
ing: E-commerce and last-mile delivery’. In: Networks 77.2, pp. 255–268. doi: 10.1002/net.
21995.

Baron, Ethan (Feb. 2019). ‘Amazon looks to turn public buses into mobile delivery stations’.
In: Star Tribune. url: https://web.archive.org/web/20190811055124/http://www.
startribune.com/amazon- looks- to- turn- public- buses- into- mobile- delivery-
stations/505136612/ (visited on 11/08/2019).

Baum, Moritz et al. (2020). ‘Modeling and engineering constrained shortest path algorithms
for battery electric vehicles’. In: Transportation Science 54.6, pp. 1571–1600.

Beasley, John Edward and Nicos Christofides (1989). ‘An algorithm for the resource constrained
shortest path problem’. In: Networks 19 (4), pp. 379–394. doi: 10.1002/net.3230190402.

Beckers, Joris et al. (2021). ‘COVID-19 and retail: The catalyst for e-commerce in Belgium?’ In:
Journal of Retailing and Consumer Services 62. doi: 10.1016/j.jretconser.2021.102645.

Bhatt, Kushal Mukesh (2019). Mobile Pickup Locations. US Patent n. US10192189B2, holder:
Amazon Technologies, Inc.

Boysen, Nils, Stefan Fedtke and Stefan Schwerdfeger (2021). ‘Last-mile delivery concepts: a
survey from an operational research perspective’. In: OR Spectrum 43, pp. 1–58. doi: 10.
1007/s00291-020-00607-8.

Bruzzone, Francesco, Federico Cavallaro and Silvio Nocera (2021). ‘The integration of passenger
and freight transport for first-last mile operations’. In: Transport Policy 100, pp. 31–48. doi:
10.1016/j.tranpol.2020.10.009.

Caspersen, Elise (2021). ‘Freight trip generation and consumer preferences for reducing extern-
alities from last mile deliveries’. PhD Dissertation. Norwegian University of Life Sciences.

Clinnick, Richard (Apr. 2020). ‘GB Railfreight uses electric commuter unit for London freight
trial’. In: Rail Magazine. url: https://web.archive.org/web/20201201151339/https:
//www.railmagazine.com/news/network/gbrf-runs-first-uk-freight-emu-trial
(visited on 01/12/2020).

27



Delle Donne, Diego, Laurent Alfandari et al. (2023). ‘Freight-on-Transit for urban last-mile
deliveries: A strategic planning approach’. In: Transportation Research Part B: Methodological
169, pp. 53–81. doi: 10.1016/j.trb.2023.01.004.

Delle Donne, Diego, Alberto Santini and Claudia Archetti (2024). Instances and Results for the
Paper “Integrating Public Transport in Sustainable Last-mile Delivery: Column Generation
Approaches”. doi: 10 . 5281 / zenodo . 10493847. url: https : / / github . com / alberto -
santini/public-transport-lmd.

Deloison, Thomas et al. (Jan. 2020). The future of the last-mile ecosystem. Tech. rep. World
Economic Forum. url: https : / / web . archive . org / web / 20210327151647 / https : / /
www.weforum.org/reports/the- future- of- the- last- mile- ecosystem (visited on
27/03/2021).

Der Spiegel (Feb. 2020). ‘Scheuer will Paketauslieferung per U-Bahn testen’. In: Der Spiegel.
url: https://web.archive.org/web/20201130023547/https://www.spiegel.de/
wirtschaft/unternehmen/scheuer-will-paketauslieferung-per-u-bahn-testen-a-
ac3bd289-92d9-4c31-a969-4dbd8b504712 (visited on 30/11/2020).

Drexl, Michael and Michael Schneider (2015). ‘A survey of variants and extensions of the
location-routing problem’. In: European Journal of Operational Research 241 (2), pp. 283–
308. doi: 10.1016/j.ejor.2014.08.030.

Edrington, Suzie et al. (Mar. 2017). Using public transportation to facilitate last mile de-
livery package delivery. Guidebook TxDOT-0-6891-P2. Texas A&M Transportation Insti-
tute and Texas Department of Transportation. url: https://web.archive.org/web/
20170910010040/https://static.tti.tamu.edu/tti.tamu.edu/documents/0-6891-
P2.pdf (visited on 10/09/2017).

Ghilas, Veaceslav, Emrah Demir and Tom Van Woensel (2016a). ‘A scenario-based planning for
the pickup and delivery problem with time windows, scheduled lines and stochastic demands’.
In: Transportation Research Part B: Methodological 91, pp. 34–51. doi: 10.1016/j.trb.2016.
04.015.

Ghilas, Veaceslav, Emrah Demir and Tom Van Woensel (2016b). ‘An adaptive large neigh-
borhood search heuristic for the Pickup and Delivery Problem with Time Windows and
Scheduled Lines’. In: Computers & Operations Research 72, pp. 12–30. doi: 10.1016/j.cor.
2016.01.018.

Gianessi, Paolo et al. (2016). ‘The Multicommodity-Ring Location Routing Problem’. In: Trans-
portation Science 50.2, pp. 541–558. doi: 10.1287/trsc.2015.0600.

Guthrie, Cameron, Samuel Fosso-Wamba and Jean Brice Arnaud (2021). ‘Online consumer
resilience during a pandemic: An exploratory study of e-commerce behavior before, during
and after a COVID-19 lockdown’. In: Journal of Retailing and Consumer Services 61. doi:
10.1016/j.jretconser.2021.102570.

He, Yunzhu and Zhongzhen Yang (2018). ‘Parcel delivery by collaborative use of truck fleets
and bus-transit vehicles’. In: Transportation Journal 57.4, pp. 399–428. doi: 10 . 5325 /
transportationj.57.4.0399.

Hörsting, Lena and Catherine Cleophas (2023). ‘Scheduling shared passenger and freight trans-
port on a fixed infrastructure’. In: European Journal of Operational Research 306 (3), pp. 1158–
1569. doi: 10.1016/j.ejor.2022.07.043.

Irnich, Stefan and Guy Desaulniers (2005). ‘Shortest Path Problems with Resource Constraints’.
In: Column Generation. Ed. by Guy Desaulniers, Jacques Desrosiers and Marius Solomon.
Springer, pp. 33–65. doi: 10.1007/0-387-25486-2\_2.

Ji, Yuxiong et al. (2020). ‘A Multimodal Passenger-and-Package Sharing Network for Urban
Logistics’. In: Journal of Advanced Transportation. Article ID 6039032. doi: 10.1155/2020/
6039032.

28



Kikuta, Jun et al. (2012). ‘New subway-integrated city logistics system’. In: Procedia Social and
Behavioral Sciences 39, pp. 476–489. doi: 10.1016/j.sbspro.2012.03.123.

Klein, Patrick Sean and Maximilian Schiffer (2022). ‘Electric vehicle charge scheduling with
flexible service operations’. In: arXiv preprint arXiv:2201.03972.

Longhorn, Danny (July 2021). ‘Passenger trains converted to deliver parcels to city centres’.
In: Rail Business Daily. url: https://web.archive.org/web/20210707152625/https:
//news.railbusinessdaily.com/passenger-trains-converted-to-deliver-parcels-
to-city-centres/ (visited on 07/07/2021).

Majoral, Genís, Francesc Gasparín and Sergi Saurí (2021). ‘Reucing e-commerce delivery ex-
ternalities with taxation. Application to Barcelona.’ In: Proceedings of the Transportation
Research Board 100th Annual Meeting, 05–29 January 2021, Washington DC, United States.
Transportation Research Board 100th Annual Meeting (5th–29th Jan. 2021). Washington DC,
United States, pp. 642–655. doi: 10.1177/03611981211012412.

Mandal, Minakshi Punam and Claudia Archetti (2023). A Decomposition Approach to Last
Mile Delivery Using Public Transportation Systems. arXiv: 2306.04219 [math.OC].

Masson, Renaud et al. (2017). ‘Optimization of a city logistics transportation system with mixed
passengers and goods’. In: EURO Journal on Transportation and Logistics 6 (1), pp. 81–109.
doi: 10.1007/s13676-015-0085-5.

Pessoa, Artur et al. (2023). ‘A unified exact approach for Clustered and Generalized Vehicle
Routing Problems’. In: Computers & Operations Research 149. doi: 10.1016/j.cor.2022.
106040.

Sadykov, Ruslan et al. (2019). ‘Primal heuristics for branch and price: The assets of diving
methods’. In: INFORMS Journal on Computing 31.2, pp. 251–267. doi: 10.1287/ijoc.
2018.0822.

Saito, Shigeo and Yomiuri Shimbun (Feb. 2021). ‘Next stop, package delivery: bus and courier
link up to serve rural area’. In: The Japan News. url: https://web.archive.org/web/
20210219030006/https://the-japan-news.com/news/article/0007140779 (visited on
19/02/2021).

Segura, Vicente et al. (Feb. 2020). Last mile logistics: challenges and solutions in Spain. Tech.
rep. Deloitte. url: https://web.archive.org/web/20210802053540/https://www2.
deloitte . com / content / dam / Deloitte / es / Documents / operaciones / deloitte - es -
operations-last-mile.pdf (visited on 02/08/2021).

Silva, Vasco, António Amaral and Tânia Fontes (2023). ‘Sustainable Urban Last-Mile Logistics:
A Systematic Literature Review’. In: Sustainability 15.3. doi: 10.3390/su15032285.

Sustainable Bus (July 2021). ‘What if trams were also to deliver goods? RegioKargo pro-
ject launched in Karlsruhe’. In: Sustainable Bus. url: https://web.archive.org/web/
20210708123229/https://www.sustainable- bus.com/news/trams- deliver- goods-
regiokargo-karlsruhe-project/ (visited on 08/07/2021).

Tagmouti, Mariam, Michel Gendreau and Jean-Yves Potvin (2007). ‘Arc routing problems with
time-dependent service costs’. In: European Journal of Operational Research 181.1, pp. 30–39.

Villa, Rafael and Andrés Monzón (2021a). ‘A Metro-Based System as Sustainable Alternative
for Urban Logistics in the Era of E-Commerce’. In: Sustainability 13 (8). doi: 10.3390/
su13084479.

Villa, Rafael and Andrés Monzón (2021b). ‘Mobility Restrictions and E-Commerce: Holistic
Balance in Madrid Centre during COVID-19 Lockdown’. In: Economies 9.2 (57). doi: 10.
3390/economies9020057.

Viu-Roig, Marta and Eduard Alvarez-Palau (2020). ‘The Impact of E-Commerce-Related Last-
Mile Logistics on Cities: A Systematic Literature Review’. In: Sustainability 12.16. doi: 10.
3390/su12166492.

29



Wang, Lina, Elliot Rabinovich and Harish Guda (2023). ‘An analysis of operating efficiency and
policy implications in last-mile transportation following Amazon’s integration’. In: Journal
of Operations Management 69 (1), pp. 9–35. doi: 10.1002/joom.1172.

Zhao, Laijun et al. (2018). ‘Location selection of intra-city distribution hubs in the metro-
integrated logistics system’. In: Tunnelling and Underground Space Technology 80, pp. 246–
256. doi: 10.1016/j.tust.2018.06.024.

Zhou, Fangting and Jin Zhang (2020). ‘Freight Transport Mode Based on Public Transport:
Taking Parcel Delivery by Subway as an Example’. In: Proceedings of the 6th International
Conference on Transportation Engineering, 20–22 September 2019, Chengdu, China. 6th Inter-
national Conference on Transportation Engineering (20th–22nd Sept. 2019). Chengdu, China,
pp. 745–754.

A Additional notation
We first describe how we build set S in

c introduced in Section 4, i.e., the set of in-stops that a
truck can use to unload a parcel for customer c ∈ C. Given two stops s1 ∈ S in and s2 ∈ Sout,
let the indicator parameter βs1s2 ∈ {0, 1} take value 1 iff a bus route links the two stops. Then,
for each customer c ∈ C, we define the following.

For each out-stop s2 ∈ Sout
c , feasible arrival times of c’s parcel at s2 are constrained by the

customer’s time window, the maximum wait time at the stop and the maximum courier route
time. We denote this set of feasible arrival times as Θs2c:

Θs2c =
[
¯
Tc − Ts2 −Wmax − (Lmax − lcs2), T̄c − Ts2 − ls2c

]
.

Feasible times Θs2c constrain the set of buses which can carry c’s parcel, when the parcel is
delivered starting from s2. We denote with Pout

s2c
such set:

Pout
s2c

=
{
p ∈ Ps2 : ts2p ∈ Θs2c

}
,

where Ps2 is the set of buses which serve stop s2. Moving backwards to the first tier, we can
then consider the feasible arrival times of a parcel at an in-stop s1 ∈ S in if the parcel must then
travel on bus p. These times are constrained by the maximum wait time at the in-stop and the
minimum time it takes to travel from the CDC to s1:

Θs1p =
[
max{ts1p − Ts1 −Wmax, los1}, ts1p − Ts1

]
.

The set of feasible arrival times for a parcel c ∈ C at in-stop s1 ∈ S in
c is similarly defined as

Θs1c =
∪
p∈Pc

Θs1p,

where Pc is defined below. We can then denote with S in
s2c

the set of in-stops which a bus can
use to unload a parcel which will be delivered to customer c starting from out-stop s2:

S in
s2c

=
{
s1 ∈ S in : βs1s2 = 1 and ∃p ∈ Pout

s2c
s.t. Θs1p ̸= ∅

}
.

Finally, the set of in-stops that a truck can use to unload a parcel bound to customer c is

S in
c =

∪
s2∈Sout

c

S in
s2c

.

Next, we characterise set RD
s1pc

introduced in Section 4. We can first determine a subset of
buses Pc ⊆ P , which can carry the parcel to customer c. Each bus in this set must reach

30



an out-stop from where the parcel can reach c’s location and must do so at a time which is
compatible with c’s time windows once the maximum wait time at the out-stop, the courier
travel time and the courier maximum route duration have been taken into account. Therefore,
we define

Pc =
{
p ∈ P | ∃s2 ∈ Sp ∩ Sout

c : ts2p + Ts2 +Wmax + Lmax ≥
¯
Tc and

ts2p + Ts2 + lcs2 ≤ T̄c

}
.

We also consider the set of buses which can carry customer c’s parcel when a truck unloads it
at in-station s1 ∈ S in

c . This set is simply P in
s1c

= Ps1 ∩ Pc. We define RD
s1pc

for each customer c,
each in-stop s1 ∈ S in

c and each bus p ∈ P in
s1c

as:

RD
s1pc

=
{
r ∈ RD

c | ts1p −Wmax ≤ ts1r ≤ ts1p
}
,

where ts1r indicates the arrival time of the truck arrives at in-stop s1 in route r, plus the handling
time Ts1 . The above definition ensures that the truck arrives at the stop before the bus (leaving
enough time for parcel handling) but not so early that it violates the maximum parcel wait
time.

We now characterise set RF
ps2c

for each customer c ∈ C, each out-stop s2 ∈ Sout
c , and each bus

p ∈ Pout
s2c

:
RF

ps2c
=

{
r ∈ RF

s2
∩RF

c | ts2p ≤ ts2r ≤ ts2p +Wmax},
where ts2r denotes the start time of the courier from out-stop s2 in route r, plus the handling
time Ts2 . The above definition ensures that the bus arrives at the out-stop before the courier
leaves (leaving enough time for parcel handling) but not so early that it violates the maximum
parcel wait time. Finally, we introduce the following convenient notation for the set of stops at
which a parcel can be picked up and, respectively, delivered by a given bus:

S in
pc = Sp ∩ S in

c , Sout
pc = Sp ∩ Sout

c .

B Details of the route generation subproblems
B.1 Labelling algorithm introduced in Section 5.1.2
As for the labelling algorithm on graph H, we associate a label LP to each partial path P from
the CDC to a vertex (s, c, ℓ) ∈ W . The label has the following components:

• vP = (s, c, ℓ) is the end vertex of the path.

• SP ⊆ S in is the set of in-stops which can still be visited when departing from vP .

• CP ⊆ C is the set of customers whose parcels can still be delivered when departing from
vP .

• τP ≥ 0 is the traversing time of the path, i.e., the sum of traversing times of the arcs used
in the path.

• QP ≥ 0 is the spare capacity on the truck when departing from vP .

• CP ∈ R is the reduced cost associated with the path.

The relevant differences with the algorithm presented in Section 5.1.1 are the presence of time
windows on the vertices (s, c, ℓ), implicitly defined by the intervals wsℓ, and the scalar cost CP .
Time windows are easily accounted for using a time resource and the corresponding resource

31



windows (Beasley and Christofides 1989). Regarding the cost, when path P is extended to a
new vertex (s′, c′, ℓ′) ∈ W along arc b ∈ B, CP is updated as follows:

CP ′ = CP + cb + λ
(1i)
c′ +

∑
p∈Ps′c′ s.t.
Is′p∩ws′ℓ′ ̸=∅

λ
(1g)
s′pc′ .

B.2 Labelling algorithm introduced in Section 5.2
Given an out-stop s ∈ Sout, and an interval wsℓ, we first define the complete, simple, directed
graph Gsℓ used to solve the shortest-path problem mentioned in Section 5.2. The vertex set,
denoted Vsℓ, consists of s and all customers which can be served from s starting at interval ℓ:

Vsℓ =
{
c ∈ C : s ∈ Sout

c , Θsc ∩ wsℓ ̸= ∅
}
,

where Sout
c and Θsc are defined, respectively, in Section 3 and Appendix A. A feasible route

corresponds to a path in Gsℓ which: (i) starts from s at a time contained in interval wsℓ;
(ii) ends in s; (iii) visits each other vertex of Vsℓ at most once; (iv) respects the courier capacity
QF; (v) has a maximum travel time, defined as the sum of the arc traversing times, of Lmax;
(vi) visits each vertex c not later than T̄c. As is standard in the vehicle routing literature, we
allow a courier to visit customer c before the beginning of c’s time window (time

¯
Tc) but, in

that case, the courier must wait until
¯
Tc before performing the delivery. The cost of a path in

Gsℓ is equal to the sum of the costs of the used arcs, minus dual prizes

λ(1j)
c +

∑
p∈Pout

sc
tsp+Ts∈wsℓ

λ(1h)
spc

collected at each visited customer c, plus the constant dual price λ
(1c)
s .

As mentioned in Section 5.2, the problem of finding the shortest path in Gsℓ corresponding
to a feasible courier route is a resource-constrained shortest-path problem. As is common in
the literature, elementarity is ensured by associating a binary resource with each customer. To
respect capacity, time windows, and maximum duration constraints, we further introduce their
respective continuous resources. Finally, we solve SPy(s, ℓ) with a labelling algorithm with the
usual dominance rules. We refer the reader to (Irnich and Desaulniers 2005) for a thorough
introduction to labelling algorithms for resource-constrained shortest-path problems.

C Semi-compact formulation
We present the complete semi-compact formulation for 3T-DPPT introduced in Section 4. Using
notation S̄ in = S in∪{o} and S̄ in

c = S in
c ∪{o}, the three sets of variables we use to replace variables

x are as follows. First, wdij ∈ {0, 1}, taking value one if and only if truck d ∈ D travels from
i to j (i, j ∈ S̄ in. Second, πds ∈ R, indicating the time when truck d ∈ D completes parcel
delivery at stop s ∈ S in. (We also use variable πdo to indicate the return time at the CDC.)
Finally, δdcs ∈ {0, 1}, taking value one if and only if truck d ∈ D delivers parcel c ∈ C at stop
s ∈ S in. In the following, cij is the travel cost of a truck driving from i to j and Ms (for s ∈ S in)
is a big constant, e.g., the last bus arrival time at stop s.

min
∑
d∈D

∑
i,j∈S̄in

c
i ̸=j

cijwdij +
∑
r∈RF

cryr (5a)

32



∑
s∈S̄in

wdos = 1 ∀d ∈ D (5b)∑
i∈S̄in\{s}

wdis =
∑

i∈S̄in\{s}

wdsi ∀d ∈ D, ∀s ∈ S in (5c)

∑
s∈S̄in

wdso = 1 ∀d ∈ D (5d)

πdi + lij −Mj(1− wdij) ≤ πdj − Tj ∀d ∈ D, ∀i ∈ S̄ in, ∀j ∈ S in \ {i} (5e)
πdj − Tj ≤ πdi + lij +Mj(1− wdij) ∀d ∈ D, ∀i ∈ S̄ in, ∀j ∈ S in \ {i} (5f)∑
p∈Pc

tspz
in
pcs −Wmax −Ms(1− δdcs) ≤ πds ∀d ∈ D, ∀c ∈ C, ∀s ∈ S in

c (5g)

πds ≤
∑
p∈Pc

tspz
in
pcs +Ms(1− δdcs) ∀d ∈ D, ∀c ∈ C, ∀s ∈ S in

c (5h)

δdcs ≤
∑

i∈Sin∪{o},i ̸=s

wdis ∀d ∈ D, ∀c ∈ C, ∀s ∈ S in
c (5i)

∑
s∈Sin

c

∑
d∈D

δdcs = 1 ∀c ∈ C (5j)

∑
p∈Pcs

zin
pcs =

∑
d∈D

δdcs ∀c ∈ C, ∀s ∈ S in
c (5k)∑

c∈C

∑
s∈Sin

c

qcδdcs ≤ Qd ∀d ∈ D (5l)

Constraints (1c)-(1f), (1h), (1j) (5m)
wdij ∈ {0, 1} ∀d ∈ D, ∀i, j ∈ S̄ in (5n)
πds ∈ R+ ∀d ∈ D, ∀s ∈ S̄ in (5o)
δdcs ∈ {0, 1} ∀d ∈ D, ∀c ∈ C, ∀s ∈ S in

c (5p)
yr ∈ {0, 1} ∀r ∈ RF (5q)
zin
spc ∈ {0, 1} ∀c ∈ C, ∀s ∈ S in

c , ∀p ∈ P in
sc (5r)

zout
spc ∈ {0, 1} ∀c ∈ C, ∀s ∈ Sout

c , ∀p ∈ Pout
sc . (5s)

Constraints (5b)–(5d) are flow conservation constraints. Constraints (5e) and (5f) set the
arrival times πds of trucks to stops. Constraints (5g) and (5h) ensure that these times (and
the corresponding delivered parcels) are compatible with the bus arrival times. Constraint (5i)
forbids delivering a package unless the corresponding truck visits the stop. Constraint (5j)
ensures that each package is delivered to one stop by one truck. Constraint (5k) ensures that
each package is collected by a bus at the same stop where it was delivered. Finally, constraint
(5l) asserts that the truck capacities are respected.

33


