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1 Proofs of the theorems
1.1 Proof of Theorem 1
We begin by showing that, without valid inequalities (1i) and (1j), the optimal solution of the continu-
ous relaxation of the 3T-DPPT can be arbitrarily small. Consider an instance with a single customer,
C = {c}, a single in-stop S in = {s1} and a single out-stop Sout = {s2}. The instance consists of one
truck and one courier. Assume that both the truck and the courier have enough capacity to carry c’s
parcel, that c’s time window corresponds to the entire planning horizon, and that Wmax and Lmax

are equal to the planning horizon’s length. Consider a bus line running through s1 and s2, with n
buses scheduled during the time horizon, i.e., P = {p1, . . . , pn}. Because of the assumptions above,
P in
s1c = Pout

s2c = P.

Then set RD consists of routes of type (o, s1, o), with one route for each feasible start time. Analogously,
RF consists of routes of type (s2, c, s2), with one route for each feasible start time. All the routes in
RD have the same cost cD, and all the routes in RF have the same cost cF.

Consider a route rd ∈ RD such that trds1 ≤ tp1s1 and a route rf ∈ RF such that trf s2 ≥ tpns2 . An optimal
solution of LP(1−) is: xrd = yrf = 1

n and zin
s1pc = zout

s2pc = 1
n for all p ∈ P . This solution satisfies

constraints (1b)–(1h), and results in an objective value of 1
n(cD + cF). Considering an instance with

a sufficiently large number of buses n, then, one can make the objective value as small as desired.

We now consider the optimal solution of LP(1) for the same instance, i.e., the optimal solution of
formulation 1 where (1i) and (1j) are included. Whatever the value of variables x and y in the
solution of the relaxation, because of constraints (1i) and (1j), their respective sum is equal to 1. Thus
the solution value is cD + cF and LP(1)

LP(1−)
= cD+cF

1
n
(cD+cF)

= n which tends to infinity for n → ∞.

More in general, constraints (1i) and (1j) guarantee that the value of LP(1) is always positive with
a lower bound corresponding to the sum of the least cost route in RD and RF. This lower bound is
invalid in case constraints (1i) and (1j) are removed.

1.2 Proof of Proposition 1
To prove that LP1 dominates LP2 we shall prove that: (i) LP1 can be extended to any complete route
(i.e., ending at the CDC) to which LP2 can be extended, and (ii) the corresponding extension of LP1

has a cost better or equal than the extension of LP2 .

Assume that LP2 is extended by a sequence of nodes (s1, c1), . . . , (sk, ck). This implies that si ∈ SP2 ⊆
SP1 , ci ∈ CP2 ⊆ CP1 , for i = 1, . . . , k, and

∑k
i=1 qci ≤ QP2 ≤ QP1 . Therefore, LP1 can also be extended

by the same sequence, thus proving (i). Now, the cost function for the extension of LP1 to a node
w = (s, c) ∈ V is

C̄P1+w(t) = νsc(t) + C̄P1(t− tvw) + cvw ≤ νsc(t) + C̄P2(t− tvw) + cvw = C̄P2+w(t),

where v = vP1 = vP2 . Hence, any sequence of extensions applied to both labels LP1 and LP2 will give
routes in which the cost of the former is always better or equal to the cost of the latter, thus proving
(ii).

As mentioned in Section 5.1.1, a key factor for the correctness of the dominance rule presented above
is that the reduced cost associated with the label is calculated with respect to the ending vertex of
the path, i.e., C̄P (t), and not with respect to the starting time from the CDC, CP (t), as done by
Tagmouti, Gendreau and Potvin (2007). Indeed, consider the example depicted in Figure 1 where, for
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Figure 1: Example graph highlighting the importance of using C̄P (t) over CP (t) in the dominance
rule.
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Figure 2: Cost functions of paths ending at vertex d (left) and paths extended to vertex j (right).
Costs are in function to starting time from the CDC (as in Tagmouti, Gendreau and Potvin 2007).

ease of exposition, we do not consider the capacity constraint and where the numbers close to each
arc are the corresponding travelling times.

The red and blue paths both end at vertex d. The total travel time is four for the blue path and six
for the red one. We now extend the paths to vertex j. In our instance, the cost functions associated
with each vertex of the graph are constant zero, except for vertices a and j where they are

Ca(t) =

{
1 for t ≤ 2

100 for t > 2
Cj(t) =

{
200 for t ≤ 6

1 for t > 6.

If we used the rule proposed by Tagmouti, Gendreau and Potvin 2007, calculating the costs with respect
to the starting time from vertex the CDC, i.e., using CP (t), we would obtain the costs depicted in
Figure 2 (left). The blue and red paths have the same cost for all values of t. Because the total travel
time of the blue path is lower, it would dominate the red one. However, extending both labels to
vertex j we get the costs depicted in Figure 2 (right). Here we see that the red path is no longer
dominated because it has a lower cost for start times t ≤ 1. In this example, in fact, it is preferable
to arrive soon to node a but late to node d. Since trucks cannot wait at nodes, it is better to take a
longer route between nodes a and d. Figure 3 shows the costs of the blue and red paths at vertex d,
when computing costs using the arrival times at the nodes, i.e., using cost function C̄P (t).

This example shows that we cannot apply the rule proposed by Tagmouti, Gendreau and Potvin (2007)
to our case because trucks cannot wait along the route, and cost functions associated with nodes might
be decreasing.

As a side note, we remark that there exists some ambiguity in the problem setting presented in
Tagmouti, Gendreau and Potvin 2007. On one side, the compact problem formulation presented in
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Figure 3: Cost functions of paths ending at vertex d, in function to arrival times (i.e., C̄P (t)).

the paper allows for waiting at customers. However, the problem description states that waiting is not
allowed. Moreover, the way in which the cost function associated with each partial path is calculated
is such that waiting at customers is not allowed.

2 A MIP approach to the pricing subproblem
The pricing problem SPx can be tackled as a MIP and solved using a black-box solver. On small
instances for which we can solve SPx to optimality, the MIP formulation usually performs worse
than the specialised approaches presented in Sections 5.1.1 and 5.1.2. Even when solving the pricing
problem heuristically, the methods of Section 6.1 produce columns with lower reduced cost in a shorter
time. On the other hand, the advantage of the MIP approach is that it promptly provides us with a
lower (dual) bound on the reduced cost of a truck column. Such a bound can be exploited to obtain
a dual bound for the entire 3T-DPPT, as in Section 3.1.

Consider variables wij ∈ {0, 1} defined for i, j ∈ {o} ∪ S in (i ̸= j) and taking value 1 iff j is visited
immediately after i. Let πs ≥ 0 be a variable representing the departing time from s ∈ S in, if s is
visited. Let γsc ∈ {0, 1} be a binary variable taking value 1 iff the route delivers the parcel of c ∈ C
at in-stop s ∈ S in. Finally, let δspc ∈ {0, 1} be a binary variable taking value 1 iff the route delivers
the parcel of c ∈ C at in-stop s ∈ S in at a time compatible with pick-up by bus p ∈ Pcs. Then a MIP
model to solve SPx reads as follows:

min
∑

i,j∈{o}∪Sin

cijwij+

∑
c∈C

∑
s∈Sin

c

λ(1i)
c γsc+

∑
c∈C

∑
s∈Sin

c

∑
p∈Psc

λ(1g)
spc δspc (1a)

s.t.
∑
s∈Sin

wos =
∑
s∈Sin

wso = 1 (1b)

∑
s′∈{o}∪Sin

s′ ̸=s

wss′ =
∑

s′∈{o}∪Sin

s′ ̸=s

ws′s ∀s ∈ S in (1c)

πi + tij + Tj −M(1− wij) ≤ πj ∀i, j ∈ S in ∪ {0}, i ̸= j, j ̸= 0 (1d)
πj ≤ πi + tij + Tj +M(1− wij) ∀i, j ∈ S in ∪ {0}, i ̸= j, j ̸= 0 (1e)
tsp −Wmax −M(1− δspc) ≤ πs ∀c ∈ C, ∀s ∈ S in

c , ∀p ∈ P in
sc (1f)

πs ≤ tsp +M(1− δspc) ∀c ∈ C, ∀s ∈ S in
c , ∀p ∈ P in

sc (1g)
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δspc ≤ γsc ∀c ∈ C, ∀s ∈ S in
c , ∀p ∈ P in

sc (1h)

γsc ≤
∑
p∈Psc

δspc ∀c ∈ C, ∀s ∈ S in
c (1i)

γsc ≤
∑

i∈{o}∪Sin

wis ∀c ∈ C, ∀s ∈ S in
c (1j)

wij ≤
∑
c∈C

γjc ∀i ∈ {o} ∪ S in, ∀j ∈ S in \ {i} (1k)∑
s∈Sin

c

γsc ≤ 1 ∀c ∈ C (1l)

∑
c∈C

∑
s∈Sc

qcγsc ≤ Q (1m)

wij ∈ {0, 1} ∀i, j ∈ {o} ∪ S in, i ̸= j (1n)
πs ≥ 0 ∀s ∈ S in (1o)
γsc ∈ {0, 1} ∀c ∈ C, ∀s ∈ S in

c (1p)
δspc ∈ {0, 1} ∀c ∈ C, ∀s ∈ S in

c , ∀p ∈ Psc, (1q)

where M > 0 is a sufficiently large number. The objective function (1a) minimises the reduced cost of
the route (but for constant term λ(1b)). Constraints (1b) and (1c) are classical arc-based formulation
constraints ensuring flow, elementarity, and starting and ending at the CDC. Constraints (1d) are
MTZ-like constraints used to set the value of variables πs while Constraints (1e) forbids the truck to
delay its route at a stop. Variables π and δ are linked through constraints (1f) and (1g); γ and δ
through constraints (1h) and (1i); w and γ through constraints (1j) and (1k). Finally, constraints (1l)
ensure that each parcel is delivered at most once, and (1m) make sure that the truck’s capacity is
respected.

3 Details of the bounding techniques
3.1 Lagrangean bound
Consider an optimal solution to the RRMP when potentially not all negative reduced cost columns
have been generated. The corresponding dual solution, which we denote with λ̄, can be unfeasible
for the dual of MPcont. This is because a missing column in RRMP may correspond to a violated
constraint in the dual. Therefore, its objective value Z̄ is not a valid dual bound for MPcont. The
key idea behind the first bounding technique is to provide a way to restore the dual feasibility of λ̄.
In this way, we obtain a new dual-feasible solution λ̃ with dual objective value Z̃. By weak duality, Z̃
is a valid dual bound for MPcont and, therefore, for the 3T-DPPT.

Let Z̄D be a lower bound for the minimum reduced cost of a truck route, and Z̄F
s be a lower bound

for the minimum reduced cost of a courier route starting from s ∈ Sout. In other words, the following
inequalities hold for Z̄D and Z̄F

s :

Z̄D ≤ min
r∈RD

{
cr + λ̄(1b) −

∑
c∈Cr

λ̄(1i)
c −

∑
c∈Cr

∑
p∈Pc

∑
s∈Sout

pc

s.t. r∈RD
spc

λ̄(1g)
spc

}
(2)

Z̄F
s ≤ min

r∈RF
s

{
cr + λ̄(1c)

s −
∑
c∈Cr

λ̄(1j)
c −

∑
c∈Cr

∑
p∈Pc

s.t. r∈RF
spc

λ̄(1h)
spc

}
. (3)

Consider now the dual solution λ̃ obtained from λ̄ modifying the following components:

λ̃(1b) = λ̄(1b) − Z̄D (4)
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λ̃(1c)
s = λ̄(1c)

s − Z̄F
s ∀s ∈ Sout. (5)

Theorem SM.1 establishes that λ̃ is, indeed, feasible for the dual of MPcont. The corresponding dual
bound Z̃, takes value

Z̃ = Z̄ −
(
λ̃(1b) − λ̄(1b)) · |D| −

∑
s∈Sout

(
λ̃(1c)
s − λ̄(1c)

s

)
· ns.

Theorem SM.1. Dual solution λ̃ obtained modifying λ̄ according to (4) and (5), and keeping all
other components equal, is feasible for the dual of MPcont.

Proof. Violated dual constraints correspond to missing primal variables x and y. There are two families
of such constraints:

−λ(1b) +
∑
c∈Cr

λ(1i)
c +

∑
c∈Cr

∑
p∈Pc

∑
s∈Sout

pc

s.t. r∈RD
spc

λ(1g)
spc ≤ cr ∀r ∈ RD (6)

−λ(1c)
s +

∑
c∈Cr

λ(1j)
c +

∑
c∈Cr

∑
p∈Pc

s.t. r∈RF
spc

λ(1h)
spc ≤ cr ∀s ∈ Sout, ∀r ∈ RF

s . (7)

Furthermore, λ(1b) only appears in (6) and λ(1c) only appears in (7). It follows that we shall prove
that λ̃(1b) satisfies (6) and non-negativity constraints and that λ̃(1c) satisfies (7) and non-negativity
constraints.

Indeed, (2) and (4) imply that (6) is satisfied. Analogously, (7) follows from (3) and (5). Finally, we
remark that the RHS of (2) and (3) are non-positive if negative reduced cost columns are missing from
the reduced sets, and thus the non-negativity of λ̃(1b) and λ̃(1c) follows. In case any of the two RHS
is strictly positive, then one can always set the corresponding LHS (Z̄D or Z̄F

s ) equal to zero. In this
case, the corresponding component of λ̃ is equal to the original component in λ̄, and this component
satisfies both the dual constraint and the non-negativity condition.

Finally, we explain how to obtain lower bounds Z̄D and Z̄F
s . Because, in practice, we can always solve

SPy to optimality in fractions of a second, we simply use the RHS of (3) as the value of Z̄F
s . We

then focus on Z̄D. A straightforward approach to bound the reduced cost of a truck route involves
relaxing some of the constraints of SPx. In particular, one can relax the “hard” in-stop and customer
elementarity constraints by applying the state-space relaxation technique (Christofides, Mingozzi and
Toth 1981) to the labelling algorithms proposed in Sections 5.1.1 and 5.1.2. In practice, however, such
relaxed subproblems are still time-consuming and produce loose bounds. Therefore, we decide to use
a dual bound from the MIP model introduced in Section 2. We solve the model with a black-box
solver and a short time limit and use the best dual bound returned by the solver.

3.2 Decomposition bound
We solve the GVRPTW introduced in Section 5.3 via branch-price-and-cut, adapting the algorithm
presented by Pessoa et al. (2023). We make two modifications to their model. First, we add support for
time windows, introducing a time resource and appropriate bounds in the pricing problem. Second, we
change the VrpSolver (Pessoa et al. 2020) edge mapping to consider a directed graph and an asymmetric
vehicle routing problem. The reason is that once time windows are introduced, the direction in which
each route is traversed becomes essential.

4 Generating an initial set of first-tier columns
To initialise the column generation algorithm, we populate RD and RF with dummy columns which
have: (i) a very high cost cr; (ii) coefficient zero in all inequalities (1b) and (1c); (iii) coefficient one
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Algorithm 1 Procedure to generate the initial columns of RD.
1: C̄ ← ∅ ▷ set of covered customers
2: R̄ ← ∅ ▷ set of routes without start time
3: Phase 1: greedy creation
4: while C̄ ̸= C do
5: r ← (o) ▷ create an empty route
6: Qr ← 0 ▷ initialise truck used capacity
7:

¯
S ← S in ▷ available in-stops

8: while
¯
S ̸= ∅ and Qr ≤ QD do

9: Let s be the stop in
¯
S closest to the endpoint of r

10: Append s to r
11:

¯
S ←

¯
S \ {s} ▷ update available in-stops

12: for c ∈
(
C \ C̄

)
∩ Cs do

13: if Qr + qc ≤ QD then
14: Route r will deliver c at s
15: Qr ← Qr + qc ▷ update truck capacity
16: C̄ ← C̄ ∪ {c} ▷ update covered customers
17: R̄ ← R̄ ∪ {r} ▷ Add new route to initial set
18: Phase 2: greedy augmentation
19: for r ∈ R̄ do
20: for in-stop s visited by r do
21: for customer c not covered by r do ▷ c is covered by another route
22: if Qr + qc ≤ QD then
23: Route r will deliver c at s
24: Qr ← Qr + qc
25: Phase 3: time assignment
26: T̄ ← {possible start times}
27: for r ∈ R̄ do
28: for start time t ∈ T̄ do
29: rt ← a copy of r with truck start time t
30: for customer c covered by rt do
31: s← in-stop at which rt delivers c’s parcel
32: t′ ← time at which c’s parcel is ready for bus pick-up at s, according to rt
33: if t′ ̸∈ Θsc then ▷ no bus can pick up c’s parcel
34: Remove c from route rt
35: RD ←RD ∪ {rt}
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Labelling algorithm Heuristic Solved instances Avg. gap

cost-function

No heuristic 46 14.33 %
path 46 13.72 %
best1 48 15.04 %
best2 47 14.61 %
best3 49 15.30 %

scalar-cost

No heuristic 46 14.52 %
path 49 14.56 %
best1 49 15.38 %
best2 48 14.88 %
best3 46 14.27 %

Table 1: Number of instances with a feasible solution (denoted here as “solved”) and average solution
gaps for different configurations.

in all inequalities (1g), (1h), (1i) and (1j). Any solution of MP which selects a dummy column is
infeasible for the 3T-DPPT.

To speed up the convergence of the pricing algorithm, in addition to the dummy column, we populate
RD with feasible columns generated through Algorithm 1. In the first phase, the algorithm creates a
set of truck routes without specifying their start time. It greedily adds new routes until all customers
are served. In the second phase, for each route, it tries to fill the truck capacity greedily, adding more
parcels to the route. This means that some parcels might be present in more than one route. This,
however, is not a problem due to set-covering constraints (1i) and the fact that constraints (1g) ensure
that exactly one parcel per client will be loaded onto a bus. In the last phase, each route is copied
multiple times, changing its start time. When assigning times, it can happen that a route delivers c’s
parcel at an in-stop s at time t′, but there is no bus which can pick up the parcel at a compatible
time, i.e., t′ ̸∈ Θsc, where Θsc is defined in A. In this case, such a route would lead to a worse
continuous relaxation because it would cover row (1i) for customer c, but not row (1g) associated with
c. Therefore, in the third phase, we remove from each route all parcels with no compatible bus.

5 Detailed numerical results
Table 1 shows the results obtained by different configurations for the pricing algorithm with respect
to the pricing of truck routes. In particular, the table shows the number of instances (over a set of
50) for which a feasible solution is found (column “Solved instances”) and the average solution gaps
with respect to the best bound known for each instance. For each configuration, the average gap is
calculated considering only the set of instances for which the configuration found a feasible solution,
thus one should be careful comparing these figures, as each of them is average over a potentially
different set. Three configurations tie in the first place, finding feasible solutions for 49 out of the 50
instances. From these, we choose the two achieving the best solution gaps: the bestk heuristic with
k = 3 for the algorithm using cost functions and the path heuristic for the algorithm using the scalar
costs.

Table 2 shows the solutions obtained by our methods on the instances from Mandal and Archetti 2023,
and a comparison of these with the results for the compact formulation (CF) and with the best results
obtained by the decomposition heuristics (DH) proposed in Mandal and Archetti 2023.
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Best setting from Improvement vs
Ins CF DH This work CMP DH Best
1 2295.02 2295.02 2295.02 0.00 % 0.00 % 0.00 %
2 1460.23 1544.11 1460.23 0.00 % 5.43 % 0.00 %
3 1250.02 1364.22 1250.02 0.00 % 8.37 % 0.00 %
4 2182.70 2300.73 2182.70 0.00 % 5.13 % 0.00 %
5 1826.87 1921.52 1754.81 3.94 % 8.68 % 3.94 %
6 1929.18 2201.15 1929.18 0.00 % 12.36 % 0.00 %
7 2876.60 2992.42 2667.57 7.27 % 10.86 % 7.27 %
8 3402.97 3720.52 3403.64 -0.02 % 8.52 % -0.02 %
9 2630.94 2748.94 2473.11 6.00 % 10.03 % 6.00 %
10 – 3303.32 3225.65 – 2.35 % 2.35 %
11 3294.88 3502.31 3137.74 4.77 % 10.41 % 4.77 %
12 4852.02 4540.10 4310.31 11.16 % 5.06 % 5.06 %
13 – 3957.66 4203.86 – -6.22 % -6.22 %
14 – 3532.50 3424.44 – 3.06 % 3.06 %
15 – 4113.17 3930.21 – 4.45 % 4.45 %
16 – 6491.98 5831.86 – 10.17 % 10.17 %
17 – 5690.91 5130.44 – 9.85 % 9.85 %
18 – 4817.65 4631.55 – 3.86 % 3.86 %
19 – 8102.66 7536.34 – 6.99 % 6.99 %
20 – 6941.22 6239.99 – 10.10 % 10.10 %
21 – 6315.74 5589.22 – 11.50 % 11.50 %
22 – 7184.62 6122.47 – 14.78 % 14.78 %
23 – 6388.33 6009.89 – 5.92 % 5.92 %
24 – 8350.63 7903.83 – 5.35 % 5.35 %

# Improves: 18 22 17
# Deteriorates: 1 1 2

# Ties: 5 1 5

Table 2: Solutions obtained by our methods on the instances from Mandal and Archetti 2023, com-
pared with the results for the compact formulation (CF) and with the best results obtained by the
decomposition heuristics (DH) proposed in the mentioned literature.
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6 The compact formulation of (Mandal and Archetti 2023) and our
improvement

In the following, we detail the modifications required to forbid trucks from waiting at public transit
stops to the formulation presented by Mandal and Archetti (2023). The notation used in that paper
is different from the one used in our paper. The reader should refer to Mandal and Archetti’s Table
1 for the list of sets and parameters and Table 2 for the list of decision variables. The formulation is
presented in (3.1)–(3.35), in Section 1 of (Mandal and Archetti 2023). For the sake of completeness,
we recall here that decision variable t1ud represents the time at which truck d ∈ D leaves stop u (or the
CDC for u = 0) and binary decision variable wuvd equals 1 if truck d ∈ D traverses arc (u, v). Also,
parameters T 1

uvd and T ′
v represent the time needed by for truck d ∈ D to traverse arc (u, v) and the

service time at stop v, respectively. The following constraints are added to the formulation to prevent
trucks from waiting at public transit stops:

t1vd ≤ t1ud + T 1
uvd + T ′

v +M(1− wuvd), ∀i, j ∈ S in ∪ {0}, i ̸= j, j ̸= 0, ∀d ∈ D (8)

where M > 0 is a sufficiently large number.

7 On stop capacity in (Mandal and Archetti 2023) and in our for-
mulation

In the 3T-DPPT formulation introduced by Mandal and Archetti (2023), the storage capacity at in-
and out-stops is unlimited. To some extent, storing too many parcels at stops is discouraged by the
parameter Wmax (i.e., the maximum time for a package to be at a stop). Hard storage capacities,
however, are an important aspect of the freight-on-transit (Delle Donne et al. 2023) system, suggesting
that a 3T-DPPT formulation should take them into account. The following theorem shows that the
compact formulation cannot model explicit stop capacities without introducing extra variables.

Theorem SM.2. The compact formulation (CF) cannot be used to model storage capacities at in-stops
with linear constraints unless extra variables are included in the model.

Proof. Formulation CF uses several sets of variables, associated with the first, second and third tiers
of 3T-DPPT. For the sake of this proof, we give a brief description of those associated to the first
tier: binary variable rcsd equals 1 iff the package for customer c is delivered by truck d to the drop-in
stop s; binary variable wuvd equals 1 iff truck d traverses arc (u, v); continuous variable tud indicates
the time when truck d finishes its drops at (or start from) node u ∈ S in ∪ {o}, where o is the CDC;
and binary variable ycsp equals 1 iff the package for customer c is picked up by public vehicle p from
drop-in stop s.

Consider an instance of 3T-DPPT with 3 trucks D = {d1, d2, d3}, 3 customers C = {c1, c2, c3} with
parcel sizes qci = 1 (i ∈ {1, 2, 3}), and a single drop-in stop S in = {s}. Assume that the storage
capacity of stop s is Qs = 2, hence any 2 parcels can be stored at s simultaneously, but the 3 parcels
cannot. Consider a feasible solution S1 for CF in which parcels c1, c2 and c3 are delivered at s by
trucks d1, d2 and d3 at times 1, 2 and 8 and picked up at times 6, 9 and 9. Figure 4 illustrates this
scenario on a timeline. This solution does not violate the storage capacity of s, as the 3 parcels are
never simultaneously at the stop. Consider now another feasible solution S2 almost equal to S1 but
in which the delivery times of parcels c2 and c3 are switched (see Figure 4). Note that S1 and S2 are
encoded identically into the model variables except for the continuous variables representing:

• The starting times of the trucks d2 and d3, i.e., tod2 and tod3 .

• And their departure times from stop s, i.e., tsd2 and tsd3 , after delivering parcels c2 and c3.

Table 3 shows the values associated with these variables, assuming a travel time from o to s of 1,
including the service time. Consider now the vectors x1 and x2 representing solutions S1 and S2,
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c1 c2

S1 :

c3

c1 c2, c3
1 2 8

6 9

c1 c3

S2 :

c2

c1 c2, c3
1 2 8

6 9

c1 c2, c3

S3 :

c1 c2, c3
1 5

6 9

Figure 4: Example proving that it is not possible to model stop capacities in CF with linear constraints
and without adding extra variables.

tod2 tod3 tsd2 tsd3

S1 1 7 2 8
S2 7 1 8 2
S3 4 4 5 5

Table 3: Values of the continuous variables of example solutions S1, S2 and S3.
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respectively. Let x3 = (x1 + x2)/2 be their midpoint. This point is identical to x1 and x2, except
for variables tod2 , tod3 , tsd2 and tsd3 . In particular, x3 satisfies all integrality constraints because
the associated variables are identical to those of x1 and x2. Being a convex combination of feasible
solutions, x3 also satisfies all linear constraints of CF, and therefore it is a feasible solution. Let S3

be the solution represented by x3. In this new solution both parcels c1 and c2 are delivered at s at
time (2 + 8)/2 = 5 (see Table 3 and Figure 4). Hence, x3 violates the storage capacity of s because
all three parcels are in s from time 5 to 6. To summarise, we produced an infeasible solution x3 that,
being a convex combination of two feasible solutions and satisfying all integrality constraints, cannot
be eliminated by means of linear inequalities.

We conclude this section by noting that stop capacities can be easily modelled in our extended formu-
lation. Since the storage load at an in-stop only decreases when a bus picks some parcels up, we need
only to check that capacities are not exceeded on these particular moments, i.e., on bus arrival times.
To this end, for each stop s ∈ S in and each bus-arrival time tsp, with p ∈ Ps, we can calculate the set
of parcels stored at s at time t by considering those delivered at s by all routes arriving before time
tsp minus those already picked up from s by previous buses. These constraints have almost no impact
on the pricing subproblem because they only add a dual cost for delivering at a stop at a given time.
Storage capacities at out-stops can be modelled analogously.
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