
Algorithms and Complexity Results for the 0–1 Knapsack
Problem with Group Fairness

Enrico Malaguti1, Paolo Paronuzzi1, and Alberto Santini2,3

1Department of Electrical, Electronic and Information Engineering, Alma Mater
Studiorum University of Bologna, Viale del Risorgimento, 2, 40136 Bologna, Italy

2Department of Economics and Business, Universitat Pompeu Fabra, Carrer
Trias-Fargas, 25–27, 08005 Barcelona, Spain

3Data Science Centre, Barcelona School of Economics, Carrer Trias-Fargas, 25–27, 08005
Barcelona, Spain

Abstract

This paper presents an exact algorithm for a generalisation of the classical 0–1 Knap-
sack Problem, called the Knapsack Problem with Group Fairness. In this problem, items
are partitioned into classes, and fairness constraints affect the number of items that can
or must be chosen from each class. The problem was introduced by Patel et al. (2021),
where approximation algorithms are discussed. This paper describes the first exact solution
approaches for the Knapsack Problem with Group Fairness, based on integer linear program-
ming formulations and a dynamic programming algorithm. The latter allows us to establish
the complexity of the problem. Finally, a set of computational experiments on benchmark
instances derived from the knapsack literature compare the effectiveness of the alternative
solution approaches.

Keywords: packing; knapsack problems; fairness; integer linear programming; dynamic
programming.

1 Introduction
This paper presents an exact algorithm for a generalisation of the classical 0–1 Knapsack Problem
(KP) in which items are partitioned into classes, and fairness constraints affect the number of
items that can or must be chosen from each class. In the KP (Martello and Toth 1990), one
is given n items, each one having a profit pj ∈ N and weight wj ∈ N, to be packed into a
knapsack of capacity c ∈ N while maximising the packed profit. Patel et al. (2021) introduced a
family of problems, collectively called KP with Group Fairness (KPGF), in which the items are
partitioned into ℓ classes J1, . . . , Jℓ. The main idea behind the KPGF is that the items packed in
the knapsack should represent each class fairly. To this end, the authors consider three different
problems in which each class has associated upper and lower bounds on the total weight, total
profit or number of items chosen from the class. In this paper, we generalise this idea further
by associating a resource consumption value hj ∈ N to each item and imposing lower and upper
bounds on the total resource consumption of packed items of each class. The three problems
introduced by Patel et al. (2021) then correspond to the special cases in which, for each item j,
hj = wj , hj = pj , and hj = 1, respectively.

The KPGF can be used to determine a fair allocation of economic resources. Patel et al. (2021)
and the references therein list some of its most important applications. Here, we highlight one
use case which is particularly important due to its timeliness and social impact: participatory
budgeting (PB). A participatory budget is a decision-making process in which ordinary citizens
decide how to allocate part of a local government’s budget. Contemporary PB was pioneered

1

in the ’90s by the Brazilian city of Porto Alegre (De Sousa Santos 1998; Novy and Leubolt
2005) and is now used in thousand of major and small cities and communities around the world,
such as New York City (Su 2017), Barcelona (Barandiaran et al. 2024), Bologna, Stuttgart and
Zaragoza (Manes-Rossi et al. 2023). In a typical PB process at the municipal level, citizens
propose interventions they would like to see implemented in their neighbourhood, such as a
new bike lane or renovating a public space. Municipality technicians then filter the technically
feasible interventions and assign an estimated budget to each one. Then, a public voting phase
starts, during which citizens can vote on one or multiple projects they would like implemented.
At the end of this phase, the municipality selects which interventions to perform, limited by the
available budget and considering citizens’ preferences. The problem of selecting the subset of
interventions to implement can be modelled as a KP in which the items are the interventions,
the capacity is the available budget, the weights are the intervention costs, and the profits are
the number of votes gathered. Still, such a system could result in one or a few neighbourhoods
receiving most interventions while others do not. Therefore, the municipality is usually interested
in establishing rules that ensure that the implemented projects affect all parts of the city. In
this case, the problem becomes a KPGF in which the item classes are the neighbourhoods, and
many different fairness principles can be used. For example, fairness could be quantified by the
number of projects (resulting in a KPGF with all hj = 1), the budget (resulting in a KPGF with
hj = wj), or some other criterion, such as the number of positively affected citizens (resulting
in a KPGF in which the values hj do not coincide with other problem data).

In this paper, we generalise the KPGF introduced by Patel et al. (2021) and present models
and an exact solution algorithm for this problem. Moreover, we settle the open question on the
complexity of the KPGF by proving that it is weakly NP-hard. After reviewing the related
literature in Section 2, we introduce a compact and an extended formulation based on Dantzig-
Wolfe reformulation in Section 3. The extended formulation has a number of variables which is
exponential in n. However, in Theorem 3.1 we show that only a pseudopolynomial number of
them are required to solve the KPGF to optimality. We exploit this property to devise a solution
algorithm outperforming the direct application of a state-of-the-art mixed-integer programming
solver to the compact formulation, as shown by the results presented in Section 4. In Section 6
we summarise the main findings and propose further research directions. Finally, we publish the
first instance set for the KPGF and make the source code of our solver available (Santini and
Paronuzzi 2025).

2 Literature review
The KPGF was introduced by Patel et al. (2021). The authors consider six problems stemming
from the combination of two base problems and three notions of fairness. The two base problems
are the classical KP and the min-Knapsack problem (Babat 1975; Csirik et al. 1991). As
mentioned in the introduction, the three notions of fairness impose bounds on the number of
items chosen in each class, their total weight, or their total profit. They prove that finding a
feasible KPGF solution is weakly NP-hard when the resource consumption coincides with the
weight or the profit. They also provide one approximation algorithm for each of the six problems
considered. Each algorithm can produce a sub-optimal solution, violate a resource consumption
bound, violate the knapsack capacity, or present a combination of these three properties. The
authors do not implement the proposed algorithms, which are mostly of theoretical interest, and
no computational experiments are carried out. Compared with (Patel et al. 2021), our paper
presents the first exact solution approaches for the KPGF. Furthermore, our approaches solve a
generalisation of the problem with an arbitrary resource and establishes complexity results for
this generalised version.

Our work continues a recent research stream on generalisations of the KP; see, e.g., Malaguti

2

et al. (2019), Clautiaux et al. (2021), Schäfer et al. (2021), Al-douri et al. (2021), Monaci et al.
(2022), Boeckmann et al. (2023), and Santini and Malaguti (2024); see also the recent surveys
by Cacchiani et al. (2022a) and Cacchiani et al. (2022b).

In the rest of this section, we place our work in the current literature along three axes: knapsack
variants with similar features (Section 2.1), other optimisation problems with fairness (Sec-
tion 2.2), and other optimisation problems with similar applications (Section 2.3).

2.1 Knaspack variants with similar features
Cappanera and Trubian (2005) introduced the Multidemand Multidimensional Knapsack Prob-
lem (MMKP). In this problem, profits can be either positive or negative, and each item is
associated with multiple resources with both upper and lower bounds. The KPGF can be seen
as a special case of the MMKP. In particular, we can transform any KPGF instance with ℓ
classes into an MMKP instance with ℓ+ 1 resources in the following way. The KPGF objective
function is valid for the MMKP. The KPGF’s capacity constraint corresponds to an MMKP
resource constraint in which the resource is the weight, the lower bound is zero, and the upper
bound is the capacity. Finally, we create an MMKP resource for each KPGF class. Given a
class k, the resource consumption of an item j in the MMKP is hj if j ∈ Jk in the KPGF or
zero otherwise. The resource upper and lower bounds are

¯
hk and h̄k, respectively.

Cappanera and Trubian (2005) propose a heuristic two-stage Tabu Search algorithm for the
MMKP. In the first stage, the algorithm explores infeasible solutions until a feasible one is
found. In the second stage, the feasible solution is improved upon. The authors also remark
that general-purpose mixed-integer solvers struggle to find feasible solutions for instances with
a few hundred of items and tens of inequalities. We are not aware of any specialised exact
algorithm for the MMKP.

Xu (2013) studies the Knapsack Problem with a Minimum Filling Constraint (KPMFC). The
KPMFC extends the classical KP by imposing a minimum weight to pack. It can be seen as
a special case of the MMKP when there is only one resource, the weight, with both a lower
and upper bound. The author proves that when the lower bound equals the upper bound,
the problem of finding a feasible solution for the KPMFC is weakly NP-hard; the proof is by
reduction from the partition problem (Garey and Johnson 1979). Xu (2013) then considers the
special case where the bound is strictly smaller than the capacity and develops an approximation
algorithm. The paper, however, does not include computational results; therefore, an empirical
comparison with the method of Cappanera and Trubian (2005) is impossible. The KPMFC can
also appear in algorithms that solve other optimisation problems. For example, the Dynamic
Programming (DP) algorithm presented by Furini et al. (2017) for the Minimum-Cost Maximal
Knapsack Problem requires solving multiple instances of the KPMFC.

Bettinelli, Ceselli, et al. (2008) consider a related problem in the bin packing context, where one
has to minimise the total cost of the bins required to pack all items. Bins can be of different
types; the type chosen determines the cost, capacity, and minimum weight that must be packed
into each used bin. The authors propose a branch-and-price algorithm whose pricing subproblem
is a restricted version of the MMKP with a single resource and both lower and upper bounds.
The authors perform heuristic pricing and then resort to a black-box mixed-integer problem
when the heuristic fails to produce a negative reduced cost column. The authors also mention
that they compared the black-box solver with a DP algorithm, ultimately favouring the former,
but they do not provide any details about the DP algorithm.

Finally, we mention the Multidimensional Multiple-Choice Knapsack Problem. In this problem,
items are partitioned into classes, and each item is associated with a profit and several resources.
The objective is to select one item in each class to maximise the collected profit and ensure

3

that the lower and upper bounds on each resource are respected. This problem was introduced,
with a different name, by van de Velde and Worm (1994). The current state-of-the-art exact
algorithm is the YACA procedure by Mansini and Zanotti (2020).

2.2 Optimisation problems with fairness constraints
Fairness is a timely topic that has been subject to investigation in many areas of knowledge,
including combinatorial optimisation problems. It usually arises in resource allocation, where a
third party must assign desirable resources to a set of agents. In general, there are several ways
of defining and quantifying fairness (see, e.g., Luss 1999). For example, one can minimise the
difference between the agents who receive the most and the least resources. In assignment prob-
lems, a popular criterion is envy-freeness (Foley 1966; Varian 1974), i.e., devising an assignment
such that each agent believes their assignment is no worse than any other agent’s. In the KPGF,
agents are classes, resources are items, and assigning a resource to an agent means packing an
item of the corresponding class in the knapsack. The notion of fairness in the KPGF states that
no agent can receive too many or too few resource units.

We remark here that the term “Group Fairness” in the KPGF as introduced by Patel et al. (2021)
slightly differs from the common usage in the literature. In its most common meaning (Conitzer
et al. 2019; Benabbou, Chakraborty, Elkind, et al. 2019), group fairness refers to the concept of
fair allocation among groups of agents rather than among individual agents. The specific way
in which group fairness is modelled can vary greatly. For example, this notion can apply on top
of individual-agent fairness or instead of it; in particular applications (Bera et al. 2019), group
fairness can also apply to overlapping groups of agents (that is, an agent can belong to multiple
groups). On the other hand, the KPGF does not include fairness for groups of agents, i.e., for
groups of classes taken together.

Finally, we mention that another stream of research investigates the “price of fairness”, i.e.,
the loss in resource allocation efficiency when including fairness constraints. This concept was
introduced by Bertsimas et al. (2011) and has been widely employed since then (see, e.g., Lodi,
Malaguti, et al. 2010; Bei et al. 2021; Lodi, Sankaranarayanan, et al. 2023).

2.3 Optimisation problems with similar applications
Resource allocation problems often arise in the public sector. For example, the government
of Singapore has faced the problem of assigning public housing to families while ensuring that
each neighbourhood houses a balanced mix of ethnic groups (Benabbou, Chakraborty, Ho, et al.
2018).

Relevant to our key application in PB, Serramia et al. (2019) study the problem of optimally
selecting projects in Barcelona’s participatory budget. Similar to our problem, the authors use
a knapsack-like model in which the proposals are the items, the costs are the weights, and the
votes received are the profits. The authors do not consider fairness; they focus on avoiding the
simultaneous selection of conflicting projects. For example, if a project proposes to create a
children’s playground in a public square and another proposes to build a skate park in the same
space, only one can be implemented. The resulting optimisation problem is a 0–1 Knapsack
Problem with Conflict Graph (KPCG; see, e.g., Bettinelli, Cacchiani, et al. 2017). The authors
solve this problem with a black-box solver and compare the results with the current selection
method used in Barcelona. This method ranks the projects in descending order of votes and
selects them up to the available budget, skipping a project if another incompatible one has
already been selected. In optimisation terms, this corresponds to a greedy KPCG heuristic
sorting the items by profit. The authors show that an approach based on optimal KPCG
solutions can increase the number of accepted proposals and their total support, measured as
the total number of votes gathered by implemented projects.

4

3 Mathematical formulations
A compact integer programming formulation for the KPGF uses binary variables xj ∈ {0, 1} for
each j ∈ {1, . . . , n} taking value one if and only if item j is packed. The formulation reads as
follows.

max

n∑
j=1

pjxj (1a)

subject to
n∑

j=1

wjxj ≤ c (1b)

∑
j∈Jk

hjxj ≥
¯
hk ∀k ∈ {1, . . . , ℓ} (1c)

∑
j∈Jk

hjxj ≤ h̄k ∀k ∈ {1, . . . , ℓ} (1d)

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}. (1e)

The objective function maximises the collected profit, while constraint (1b) ensures that the
knapsack capacity is respected. Constraints (1c) and (1d) ensure that each class’s lower and
upper bound on the resource consumption are satisfied.

An alternative formulation for the problem can be obtained by applying a Dantzig-Wolfe re-
formulation (see, e.g., Vanderbeck and Wolsey 2010) to model (1a)–(1e). The resulting model
optimises over the convex hull of vectors satisfying constraints (1b)–(1d) which are encoded, for
each class k, by the collection Rk of valid packings of items of class k. A packing in Rk is a
subset of items R ⊆ Jk such that

¯
hk ≤

∑
j∈R

hj ≤ h̄k and
∑
j∈R

wj ≤ c. (2)

Remark that, if
¯
hk = 0, then ∅ ∈ Rk, i.e., it is possible that no item of class k is packed. Let pR,

wR and hR be the profit, weight and resource consumption associated with a generic packing R,
i.e.,

pR =
∑
j∈R

pj , wR =
∑
j∈R

wj , and hR =
∑
j∈R

hj .

For any class k and packing R ∈ Rk, let ηR ∈ {0, 1} be a variable taking the value one if the
items in R are the ones packed for class k. Then, the Dantzig-Wolfe reformulation for the KPGF
reads

max
ℓ∑

k=1

∑
R∈Rk

pRηR (3a)

subject to
ℓ∑

k=1

∑
R∈Rk

wRηR ≤ c (3b)

∑
R∈Rk

ηR = 1 ∀k ∈ {1, . . . , ℓ} (3c)

ηR ∈ {0, 1} ∀k ∈ {1, . . . , ℓ}, ∀R ∈ Rk. (3d)

The objective function maximises the packed profit, constraint (3b) ensures that the knapsack’s
capacity is not exceeded, and constraint (3c) imposes that exactly one packing is chosen for each
class.

5

This formulation defines a Multiple-Choice Knapsack Problem (MCKP), a knapsack problem
where items are partitioned into classes, and exactly one item per class must be selected. The
problem is known to be weakly NP-hard. In particular, an MCKP with n̄ items and capacity c
can be solved in O(n̄c) operations by using a DP algorithm (see Martello and Toth 1990; Kellerer
et al. 2004).

For each class k, each packing R ∈ Rk of the KPGF corresponds to a MCKP item. Because
the number of packings is exponential in n, (3a)–(3d) defines a MCKP with a number of items
(say, n̄) exponential in the number of KPGF items (n). However, in the following proposition,
we show that, given the KPGF’s special structure, considering a subset of variables of pseudo-
polynomial size is sufficient to find an optimal solution. In the rest of this section, we show that
this subset can be generated using a DP algorithm with pseudo-polynomial time complexity.

Proposition 3.1. For each class k, consider the sub-collection R̄k ⊂ Rk including at most
one packing for each integer value W ∈ {1, . . . , c}, namely, a packing R maximising pR and
having

¯
hk ≤ hR ≤ h̄k and wR = W , if one exists. The optimal solution of formulation (3a)–(3d)

restricted to the variables associated with these sub-collections is optimal for the KPGF.
Proof. For each class k, the sub-collection R̄k contains one optimal packing for each amount of
the capacity which can be allocated to the class.For each class k, the sub-collection R̄k can be enumerated by the DP algorithm presented in
the next section.

3.1 Dynamic programming algorithm for packing enumeration
Let nk = |Jk| be the number of items of class k, and Jk = {jk1, . . . , jknk

}. Let ζk(H,W,m) be
the largest profit that can be achieved with the first m items in Jk (i.e., {jk1, . . . , jkm}) such that
the selected items have total weight no larger than W and total resource consumption equal to
H, and let ρk(H,W,m) ⊆ Jk be an associated packing. Furthermore, denote with Hk(W) the
resource consumption of a packing whose total weight is W , m = nk, and the profit is maximum
for the given weight, i.e.,

Hk(W) = argmax
H∈{

¯
hk,...,h̄k}

ζk(H,W,nk).

The sub-collection R̄k is defined as:

R̄k =

{
ρk
(
Hk(W),W, nk

)
: W ∈ {1, . . . , c}

}
. (4)

The values of ζk(H,W,m) and the associated packings ρk(H,W,m) can be computed via DP by
using the following recursion:

ζk(H,W,m) = max

{
ζk(H,W,m− 1),

pjkm + ζk(H − hjkm ,W − wjkm ,m− 1).
(5)

In (5), we build R̄k by choosing, for each feasible weight W , the packing giving the maximum
profit and respecting the resource consumption bounds (if any).

The first case corresponds to not packing item jkm. In contrast, jkm is packed in the second case,
yielding its profit and decreasing the available capacity and the target resource consumption level.
Remarking that, in the recursion, at least one and possibly all three arguments of ζk decrease,
one can provide the following base cases that are valid for small enough values of H, W , and m:

ζk(H,W,m) = −∞ if H < min
i=1,...,m

hjki or H >

m∑
i=1

hjki , (6)

ζk(H,W,m) = −∞ if W < min
i=1,...,m

wjki , (7)

6

ζk(H,W, 1) =

{
p1 if H = hjk1 and wjk1 ≤ W

−∞ otherwise.
(8)

Condition (6) refers to two trivial cases in which it is not possible to meet the exact resource
level H with items {jk1, . . . , jkm} either because H is too small or too large compared with the
resources associated with the items. We remark that it might be impossible to meet level H
in other cases not included in (6), namely when no combination of items can yield exactly H
resource units. Still, condition H < mini=1,...,m hjki is sufficient to obtain a valid base case for
the DP algorithm because it becomes active when the value of H is small enough. Condition (7)
refers to the case when it is impossible to respect the capacity bound because W is too small.
Condition (8) considers the first item jk1 only and checks whether taking it as the only item
yields a feasible solution. Finally, we use the above DP algorithm to settle the question of the
KPGF’s complexity.

Proposition 3.2. The KPGF is weakly NP-hard.

Proof. Let h = maxk
{
h̄k −

¯
hk

}
. For each class k, we can compute R̄k in O(nkch), i.e., O(nch)

for all classes.

The input for the MCKP has size
∣∣⋃ℓ

k=1 R̄k

∣∣ = O(ℓc). Therefore, the DP algorithm for the
MCKP needs O(ℓc2) operations.

The overall complexity of our approach is, thus, O(nch) +O(ℓc2).

3.2 Class-specific capacities
For a given class k′, let ŵk′ be the minimum weight of a subset of items of this class consuming
an amount of resource between

¯
hk′ and h̄k′ . The maximum capacity that the items of a class

k can occupy in the knapsack of the KPGF is therefore reduced by the values of ŵk′ of all
other classes. By computing the values ŵk′ for all classes, we define per-class capacities ĉk :=
c−

∑
k′∈{1,...,l}\k ŵk′ which can be used in (2) and (5), replacing capacity c.

The minimum weight of subsets of items of a class k can be found by solving the following integer
program, in which variable yj ∈ {0, 1} (for j ∈ Jk) indicates that item j is part of the set.

min
∑
j∈Jk

wjyj (9a)

subject to
∑
j∈Jk

hjyj ≥
¯
hk (9b)

∑
j∈Jk

hjyj ≤ h̄k (9c)

yj ∈ {0, 1} ∀j ∈ Jk. (9d)

Model (9a)–(9d) describes a min-Knapsack problem, with the addition of the classical KP con-
straint (9c). If problem (9a)–(9d) is infeasible for some class or its optimal solution value is
larger than c, then the entire KPGF is infeasible. Indeed, in this case it is impossible to select
items from such a class while respecting the resource consumption bounds and the knapsack’s
capacity. Moreover, the KPGF is infeasible if ĉk < 0 for any class k because, in this case, the
knapsack does not have enough capacity to accommodate items of all classes. We remark that
any lower bound on ŵk′ , for a given class k′, can be used to set the value of ĉk for k ̸= k′. Using a
lower bound in the computation of ŵk′ would result in a larger (and, therefore, looser) value for
ĉk. In our case, a black-box solver optimally solves problems (9a)–(9d) almost instantaneously.
Therefore, our implementation uses values ĉk instead of c.

7

4 Computational results
In this section, we report on computational experiments comparing our approach based on the
extended formulation with the direct application of a state-of-the-art solver to the compact for-
mulation. Regarding the extended formulation, we first generate the pseudopolynomial number
of variables required to solve the model to optimality by using the DP algorithm presented in
Section 3.1. Recall that the resulting problem is an MCKP. We solve this problem by means
of the algorithm described in Pisinger (1995a) and available at (Pisinger 1995b). We solve the
compact formulation by using Gurobi version 11.0.0. Both approaches are tested on a machine
with four Intel i7 processors running at 2.60GHz and 16GB RAM, running in single-thread mode.
All algorithms have a 1-hour time limit.

In the remainder of this section, we describe how we generated the test instances and provide
a computational comparison between the two approaches described above. The instances, their
generator, the solver’s code, and the scripts used to generate the figures of this section are
available at (Santini and Paronuzzi 2025).

4.1 Instance generation
We generate our KPGF instances from base KP instances. We use the thirteen generators in-
troduced by Pisinger (2005) to generate the KP instances. The generators are: almost strongly
correlated, circle, inverse strongly correlated, MSTR, profit ceiling, span uncorrelated, span
weakly correlated, span strongly correlated, strongly correlated, subset sum, uncorrelated, uncor-
related similar, and weakly correlated. All the generators except uncorrelated similar require an
additional parameter (denoted R) corresponding to the order of magnitude of the values used
for the profits and the weights. Following Pisinger (2005), we use 1000 and 10,000 for this value,
while the uncorrelated similar instances use a hard-coded value of 100,000.

Our generation procedure starts from a KP instance with n items, profits pj , weights wj , and
capacity c and transforms it into a KPGF instance with ℓ classes (ℓ ≤ n). We first assign
to each item i the class 1 + (i|ℓ), where i|ℓ denotes the remainder of the integer division of
i by ℓ. This way, we ensure that all classes are non-empty and their sizes are roughly equal.
Second, we generate the resource bounds

¯
hk and h̄k by drawing them independently from the

uniform integer distributions U(50, 150) and U(150, 250), respectively. Third, we generate the
resource consumption values hj . Denote with r =

(∑n
j=1wj

)
/c the ratio between the total item

weights and the capacity. The resource consumption of an item j belonging to class k is set to
hj = min

{[
ru/|Jk|

]
, h̄k

}
, where notation [·] denotes integer rounding and u is drawn from the

uniform integer distribution U(125, 175). If the total resource consumption of items in a class
is strictly smaller than the class’s resource lower bound, we discard the instance because it is
trivially infeasible.

The above procedure aims to maintain tight capacity and resource bounds, making the instances
more challenging while avoiding generating too many infeasible instances. First, remark that
r−1 is a rough approximation of the fraction of items that can be packed in the knapsack due
to the capacity constraint. For example, if the total weight of the items is twice as large as the
capacity, we can expect that only half of the items can be packed. Thus, we expect r−1n items
to be packed in total and that r−1|Jk| items of class k will be packed. Remark that E[

¯
hk] = 100

and E[h̄k] = 200. Using the procedure described above, the expected resource consumption of
a subset of size r−1|Jk| of class-k items is 150, thus increasing the likelihood that a solution
respecting both the capacity and each class’s resource bounds can be found.

There are 12× 2 + 1 = 25 combinations of generator and parameter R: two per each generator
using this parameter, plus one for the uncorrelated similar generator, which does not use it.
For each of the 25 combinations, we consider values of n ∈ {50, 100, 200, 500, 1000, 2000} and

8

100 101 102 103 104 105

Normalised runtime

30

40

50

60

70

80

90

100

In
st

an
ce

s
so

lv
ed

(%
)

Extended Compact

Figure 1: Performance profile comparing the compact and extended formulations.

ℓ ∈ {20, 100, 500} and consider the twelve (n, ℓ) combinations with n > ℓ. Finally, we generate
ten instances for each of the 25× 12 = 300 combinations of generator, R, n and ℓ, for a total of
3000 instances. Out of these, 1787 are feasible, and the remaining 1213 are provably infeasible.
The results presented in the rest of this section refer to the feasible instances.

4.2 Computational results
Figure 1 shows a performance profile comparing the extended and the compact formulations.
The x axis reports the time required for solving an instance, normalised by the time required
by the fastest of the two algorithms. The y axis reports the percentage of instances solved to
optimality within the given runtime. The dark blue line refers to the compact formulation, and
the light orange line refers to the extended formulation. Interestingly, the compact formulation
outperforms the extended one when instances are easy. Indeed, an analysis of the detailed
results shows that the compact formulation solves approximately 69% of the instances within
one second. In contrast, the extended formulation only solves about 14% of the instances in
the same time. However, this 69% of the instances constitutes the majority of the instances
the compact formulation can solve, no matter how much time it is given (up to a maximum of
one hour). Indeed, the compact formulation can only solve 1400 out of the 1787 instances, i.e.,
78.34%. By contrast, the extended formulation solves more instances when given more time: in
total, it solves 1763 out of the 1787 instances, i.e., 98.66%.

To summarise, the compact formulation solves fewer instances, but when it does, it takes less
time. By contrast, the extended formulation solves more instances and tends to use a larger
fraction of the available time. Figures 2 and 3 provide more details and characterise the hard
instances for the compact and the extended formulation, respectively. Each figure contains three
charts; each chart displays the percentage of instances solved to optimality when aggregating
them according to three criteria. The first criterion (left chart) is the KP generator used to build
the base knapsack instance. The second criterion (top right chart) is the number of items n, and
the third one (bottom right chart) is the data range R, which determines the order of magnitude
of weights, profits and capacity. Figure 2 also shows the average percentage gaps reported by
Gurobi when timing out while solving the compact formulation. The gaps are computed over
the open instances and are displayed above each bar for which there are open instances. It
is not possible to compute the gaps for the extended formulation because the timeouts always
occur during the column generation phase (Section 3.1), whereas, once this phase is completed,
the MCKP solver only takes a few seconds to produce the optimal solution. When the timeout

9

W
ea

k
ly

co
rr

el
at

ed

U
n

co
rr

el
at

ed
si

m
il
ar

U
n

co
rr

el
at

ed

S
u

b
se

t
su

m

C
ir

cl
e

P
ro

fi
t

ce
il
in

g

S
p

an
u

n
co

rr
el

at
ed

A
lm

os
t

st
ro

n
gl

y
co

rr
el

at
ed

M
S

T
R

In
ve

rs
e

st
ro

n
gl

y
co

rr
el

at
ed

S
tr

on
gl

y
co

rr
el

at
ed

S
p

an
w

ea
k
ly

co
rr

el
at

ed

S
p

an
st

ro
n

gl
y

co
rr

el
at

ed

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
3
%

0.012

9
2
%

0.000

8
6
%

0.010

8
0
%

0.009

6
7
%

0.005

5
9
%

0.015

5
6
%

0.013

5
1
%

0.012

4
8
%

0.011Gap% →

50 100 200 500 1000 2000

Number of items

100.0% 99.3%

0.007

95.1%

0.038

77.5%

0.018

74.0%

0.011

64.8%

0.006Gap% →

1000 10000 100000

Data range R

79.7%

0.011

75.5%

0.010

100.0%

← Gap%

Not optimal Optimal

Figure 2: Results summary for the compact formulation.

10

S
u

b
se

t
su

m

S
tr

on
gl

y
co

rr
el

at
ed

S
p

an
w

ea
k
ly

co
rr

el
at

ed

S
p

an
u

n
co

rr
el

at
ed

S
p

an
st

ro
n

gl
y

co
rr

el
at

ed

M
S

T
R

C
ir

cl
e

W
ea

k
ly

co
rr

el
at

ed

In
ve

rs
e

st
ro

n
gl

y
co

rr
el

at
ed

P
ro

fi
t

ce
il
in

g

A
lm

os
t

st
ro

n
gl

y
co

rr
el

at
ed

U
n

co
rr

el
at

ed

U
n

co
rr

el
at

ed
si

m
il
ar

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

9
9
%

9
9
%

9
9
%

9
9
%

9
4
%

8
6
%

50 100 200 500 1000 2000

Number of items

100.0% 100.0% 100.0% 100.0% 100.0%
95.2%

1000 10000 100000

Data range R

100.0% 98.3%

86.2%

Not optimal Optimal

Figure 3: Results summary for the extended formulation.

occurs while generating packings, we do not have a valid MCKP instance to solve, and therefore,
no valid bounds. Indeed, if we removed the 1-hour time limit and let the packing generation
procedure complete, we would be able to solve all instances in at most 6972 seconds using the
extended formulation.

Figure 2 shows that the compact formulation is sensitive to the base knapsack instance type,
solving all instances of type weakly correlated, uncorrelated similar, uncorrelated and subset
sum, but less than two thirds of the inverse strongly correlated, strongly correlated, and span
weakly correlated ones, and less than half of the span strongly correlated instances. As expected,
increasing the number of items also increases the instance difficulty: the compact formulation
solves all instances with 50 items but less than two-thirds of those with 2000 items. Finally,
increasing the data range parameter from 1000 to 10,000 makes the instances harder. The
compact formulation solves all instances with a data range of 100,000 to optimality. However,
recall that following Pisinger (2005), only instances of type uncorrelated similar use this data
range, and these instances are particularly easy to solve with the compact formulation despite
their larger data range.

The extended formulation generally outperforms the compact one, solving more instances. How-
ever, we notice some complementarity among the two approaches: the uncorrelated similar
instances, which were among the easiest to solve with the compact formulation, are the hardest
for the extended one. The reason is that, as remarked in Theorem 3.2, the algorithm we use
to solve the extended formulation has complexity O(nch) + O(ℓc2). The uncorrelated similar
instances have a capacity c one or two orders of magnitude larger than the other instances
(100,000 vs. 1000 or 10,000), thus affecting the algorithm’s runtime.

At the same time, we remark that the compact formulation’s gaps on the open instances are

11

generally small, due to the large profits appearing in the (Pisinger 2005) instances. When
classifying the instances by generator, the inverse strongly correlated instances result in the
largest average gaps (0.015%). Interestingly, using a capacity of 1000 or 10000 does not impact
the average gaps significantly. Regarding the number of items, while larger instances are harder
to solve for the compact formulation, they do not result in larger average gaps. As mentioned
above, this is due to the fact that instances with more items have larger profits, resulting in
larger absolute values for the upper and lower bounds.

With respect to the extended formulation, as mentioned above, if we increased the time limit
from one to two hours, this formulation would close all instances. This further confirms the pre-
vious observation prompted by the analysis of the performance profile (Figure 1): the extended
formulation seems to benefit from longer computation times more than the compact formulation.

We conclude this section by reporting that new hard knapsack instances have been recently
proposed by Jooken et al. (2022). These instances are inherently difficult and have even larger
values for the item profits and the knapsack capacities compared to the instances of Pisinger
(2005). In particular, they have capacities of one million, 100 million, and 10 billion. We gener-
ated a set of KPGF instances starting from the (Jooken et al. 2022) instances with a procedure
analogous to that described in Section 4.1. We used the 01–KP instances with the capacity of
the order of magnitude relevant for our application, i.e., one million (see also Section 5). Inter-
estingly, the extended formulation could solve all 1685 feasible instances in at most 376 seconds,
whereas the compact one only solved 81.5% of the instances within the 1-hour time limit. The
generator, the generated instances, the results, and their analysis are available at (Santini and
Paronuzzi 2025).

5 Case study
To illustrate the practical relevance of the KPGF, we analyse the participatory budgeting alloca-
tion process that took place in Barcelona, Spain, in 2020 and whose projects were implemented
during 2020–2023. This case study shows that considering fairness in knapsack problems can
result in alternative and improved solutions supporting real-world decision-making. The city of
Barcelona allocates specific budgets to each district and implements a selection process in which
projects are approved based on their vote counts until the district’s budget is exhausted.

We examine how alternative optimisation approaches may lead to improved outcomes while re-
specting the same total budget. Specifically, we compare the solution implemented by Barcelona’s
municipality (As-is) with two alternative methods. The first method (KP) optimally solves each
district’s separate knapsack problem, with the district’s budget serving as the knapsack capacity.
The second method (KPGF) aims to achieve a fair allocation across districts using the KPGF.
In the KPGF approach, the total budget, i.e., the sum of the districts’ budgets, is used as the
capacity of the knapsack, while we removed the resource upper bound constraints. The resource
lower bound for each class is set equal to the budget allocated to the corresponding district in
the As-is implementation. This ensures every district receives at least as much funding as in the
currently implemented solution, while allowing optimisation to redistribute additional resources.
Other policy choices could determine lower bounds differently.

Table 1 compares the three solution approaches. Column “#Proj” reports the number of financed
projects, “Votes” indicates the number of votes received by selected projects, and “Cost” reports
the total cost of the chosen projects in thousands of euros. Each row displays the results for a
single district, while the last row contains aggregate sums across all districts. We did not report
computing times, as they are negligible and out of the scope of this analysis.

Our analysis reveals that using an optimisation-based approach leads to substantial improve-
ments in overall satisfaction (measured as the number of votes received by the selected projects).

12

District Budget As–is KP KPGF

Proj Votes Cost # Proj Votes Cost # Proj Votes Cost

Ciutat Vella 3 400 9 12 656 3 080 11 14 254 3 380 11 13 498 3 085
Eixample 3 000 8 18 674 2 995 12 22 512 2 995 13 23 683 3 245
Gràcia 2 400 8 14 576 2 225 8 14 576 2 225 8 14 576 2 225
Horta Guinardó 3 200 7 9 069 3 187 10 11 133 3 157 10 11 006 3 197
Les Corts 2 000 8 6 870 1 970 11 8 241 1 948 11 8 205 2 023
Nou Barris 3 600 9 11 043 3 573 13 13 826 3 460 13 14 272 3 654
Sant Andreu 3 000 9 11 142 2 973 12 13 762 2 853 13 14 308 3 113
Sant Martí 3 600 7 13 625 3 480 11 18 434 3 459 12 18 940 3 669
Sants Montjuïc 3 600 5 12 960 3 570 11 21 441 3 514 12 22 144 3 639
Sarrià 2 200 6 4 309 2 093 8 4 992 2 183 8 4 860 2 143

Total 30 000 76 114 924 29 145 107 143 171 29 173 111 145 492 29 992

Table 1: Solution comparison for a real participatory budgeting process (Barcelona 2020–2023).

Specifically, the KPGF solution demonstrates superior performance across all metrics, achiev-
ing the largest total votes (145 492) and selecting more projects (111) than both the As-is (76
projects, 114924 votes) and KP (107 projects, 143171 votes) approaches. The larger total cost
(29992 thousands of euros) also indicates efficient budget utilization.

6 Conclusions
This work has generalised the Knapsack Problem with Group Fairness (KPGF) introduced by
Patel et al. (2021). We proved that the problem is weakly NP-hard and devised two mathe-
matical formulations for it. The first one is a compact formulation using n variables, where n is
the number of items in the instance. The second is an extended formulation using a number of
variables which is exponential in n. However, we proved that a subset of variables of pseudopoly-
nomial size is sufficient to solve the problem optimally. We provided a constructive algorithm
based on DP to build this subset. Computational experiments on instances with 50–2000 items
demonstrated the superiority of our approach based on the DP algorithm and the extended
formulation.

One of the main applications of the KPGF is in participatory budgeting. In Section 5, we
present a case study showing how approaches based on the KPGF can improve the currently
implemented solutions. Future research could incorporate additional relevant constraints for
this application. For example, Serramia et al. (2019) suggest that a decision-support tool for
participatory budgeting should include conflict constraints that prevent mutually incompatible
projects from being selected simultaneously.

Declarations
Funding. Alberto Santini was funded by the Spanish Ministry of Science, Innovation and
Universities and by the European Social Fund Plus (ESF+) through grant RYC2022-035269-
I via MCIN/AEI/10.13039/501100011033 of the “Ramón y Cajal” programme and through
grant PID2024-161521OA-I00 of the programme “Proyectos de Generación de Conocimiento
2024” of the Spanish Ministry of Science, Innovation and Universities. Enrico Malaguti and
Paolo Paronuzzi were funded by the Air Force Office of Scientific Research under award number
FA8655-25-1-7013.

Data availability. The instances used in this paper, their generator, the solver’s code, and the
scripts used to generate the figures of this section are available at (Santini and Paronuzzi 2025).

13

References
Babat, L. (1975). “Linear functionals on the n-dimensional unit cube”. In: Reports of the Academy

of Sciences of the Soviet Union 221 (4), pp. 761–762.
Barandiaran, X., A. Calleja-López, A. Monterde, and C. Romero (2024). Decidim, a Technopolit-

ical Network for Participatory Democracy. Philosophy, Practice and Autonomy of a Collective
Platform in the Age of Digital Intelligence. SpringerBriefs in Political Science. Springer Cham.

Bei, X., X. Lu, P. Manurangsi, and W. Suksompong (2021). “The Price of Fairness for Indivisible
Goods”. In: Theory of Computing Systems 65, pp. 1069–1093.

Benabbou, N., M. Chakraborty, E. Elkind, and Y. Zick (2019). “Fairness Towards Groups of
Agents in the Allocation of Indivisible Items”. In: Proceedings of the 28th International Joint
Conference on Artificial Intelligence (Macao, China, Aug. 10–16, 2019). Ed. by S. Kraus. AAAI
Press, pp. 95–101.

Benabbou, N., M. Chakraborty, X.-V. Ho, J. Sliwinski, and Y. Zick (2018). “Diversity Con-
straints in Public Housing Allocation”. In: Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems (Stockholm, Sweden, July 10–15, 2018). Ed.
by M. Dastani, G. Sukthankar, E. André, and S. Koenig. International Foundation for Au-
tonomous Agents and Multiagent Systems, pp. 973–981. isbn: 978-1-4503-5649-7.

Bera, S., D. Chakrabarty, N. Flores, and M. Negahbani (2019). “Fair Algorithms for Cluster-
ing”. In: Proceedings of the 32nd Conference on Advances in Neural Information Processing
Systems (NeurIPS) (Vancouver, Canada, Dec. 8–14, 2019). Ed. by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett. Curran Associates, pp. 4954–4965.
isbn: 9781713807933.

Bertsimas, D., V. Farias, and N. Trichakis (2011). “The Price of Fairness”. In: Operations Re-
search 59.1, pp. 17–31.

Bettinelli, A., V. Cacchiani, and E. Malaguti (2017). “A Branch-and-Bound Algorithm for the
Knapsack Problem with Conflict Graph”. In: INFORMS Journal on Computing 29.3, pp. 457–
473.

Bettinelli, A., A. Ceselli, and G. Righini (2008). “A branch-and-price algorithm for the variable
size bin packing problem with minimum filling constraint”. In: Annals of Operations Research
179, pp. 221–241.

Boeckmann, J., C. Thielen, and U. Pferschy (2023). “Approximating single- and multi-objective
nonlinear sum and product knapsack problems”. In: Discrete Optimization 48 Part 1. Article
ID 100771.

Cacchiani, V., M. Iori, A. Locatelli, and S. Martello (2022a). “Knapsack problems — An overview
of recent advances. Part I: Single knapsack problems”. In: Computers & Operations Research
143. Article ID 105692.

Cacchiani, V., M. Iori, A. Locatelli, and S. Martello (2022b). “Knapsack problems — An overview
of recent advances. Part II: Multiple, multidimensional, and quadratic knapsack problems”. In:
Computers & Operations Research 143. Article ID 105693.

Cappanera, P. and M. Trubian (2005). “A Local-Search-Based Heuristic for the Demand-Constrained
Multidimensional Knapsack Problem”. In: INFORMS Journal on Computing 17 (1), pp. 82–
98.

Clautiaux, F., B. Detienne, and G. Guillot (2021). “An iterative dynamic programming approach
for the temporal knapsack problem”. In: European Journal of Operational Research 293 (2),
pp. 442–456.

Conitzer, V., R. Freeman, N. Shah, and J. Wortman Vaughan (2019). “Group Fairness for the
Allocation of Indivisible Goods”. In: Peoceedings of the 33th AAAI Conference on Artificial
Intelligence (Honolulu, United States, Jan. 27–Feb. 1, 2019). AAAI Press, pp. 1853–1860.

Csirik, J., H. Frenk, M. Labbé, and S. Zhang (1991). “Heuristics for the 0–1 min-Knapsack
Problem”. In: Acta Cybernetica 10.1–2, pp. 15–20.

14

De Sousa Santos, B. (1998). “Participatory Budgeting in Porto Alegre: Toward a Redistributive
Democracy”. In: Politics & Society 26.4, pp. 461–510.

Al-douri, T., M. Hifi, and V. Zissimpoulos (2021). “An iterative algorithm for the Max-Min
knapsack problem with multiple scenarios”. In: Operational Research 21, pp. 1355–1392.

Foley, D. K. (1966). “Resource allocation and the public sector”. PhD Thesis. Yale University.
Furini, F., I. Ljubić, and M. Sinnl (2017). “An effective dynamic programming algorithm for

the minimum-cost maximal knapsack packing problem”. In: European Journal of Operational
Research 262.2, pp. 438–448.

Garey, M. and D. Johnson (1979). Computers and Intractability. A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company. isbn: 0-7167-1045-5.

Jooken, J., P. Leyman, and P. De Causmaecker (2022). “A new class of hard problem instances
for the 0–1 knapsack problem”. In: European Journal of Operational Research 301.3, pp. 841–
854.

Kellerer, H., U. Pferschy, and D. Pisinger (2004). “The Multiple-Choice Knapsack Problem”. In:
Knapsack Problems. Ed. by H. Kellerer, U. Pferschy, and D. Pisinger. Springer, pp. 317–347.
isbn: 978-3-642-07311-3.

Lodi, A., E. Malaguti, and N. E. Stier-Moses (2010). “Efficient and fair routing for mesh net-
works”. In: Mathematical Programming 124, pp. 285–316.

Lodi, A., S. Sankaranarayanan, and G. Wang (2023). “A framework for fair decision-making
over time with time-invariant utilities”. In: European Journal of Operational Research 319 (2),
pp. 456–467.

Luss, H. (1999). “On Equitable Resource Allocation Problems: A Lexicographic Minimax Ap-
proach”. In: Operations Research 47.3, pp. 361–378.

Malaguti, E., M. Monaci, P. Paronuzzi, and U. Pferschy (2019). “Integer optimization with
penalized fractional values: The Knapsack case”. In: European Journal of Operational Research
273 (3), pp. 874–888.

Manes-Rossi, F., I. Brusca, R. Levy Orelli, P. C. Lorson, and E. Haustein (2023). “Features
and drivers of citizen participation: Insights from participatory budgeting in three European
cities”. In: Public Management Review 25.2, pp. 201–223.

Mansini, R. and R. Zanotti (2020). “A Core-Based Exact Algorithm for the Multidimensional
Multiple Choice Knapsack Problem”. In: INFORMS Journal on Computing 32.4, pp. 1061–
1079.

Martello, S. and P. Toth (1990). Knapsack Problems. Algorithms and computer implementations.
Wiley. isbn: 978-0471924203.

Monaci, M., C. Pike-Burke, and A. Santini (2022). “Exact algorithms for the 0–1 time-bomb
knapsack problem”. In: Computers & Operations Research 145. Article ID 105848.

Novy, A. and B. Leubolt (2005). “Participatory Budgeting in Porto Alegre: Social Innovation
and the Dialectical Relationship of State and Civil Society”. In: Urban Studies 42.11, pp. 2023–
2036.

Patel, D., A. Khan, and A. Louis (2021). “Group Fairness for Knapsack Problems”. In: Proceed-
ings of the 20th International Conference on Autonomous Agents and MultiAgent Systems
(Online, May 3–7, 2021). Ed. by F. Dignum, A. Lomuscio, U. Endriss, and A. Nowé. Inter-
national Foundation for Autonomous Agents and Multiagent Systems, pp. 1001–1009. isbn:
978-1-4503-8307-3.

Pisinger, D. (1995a). “A minimal algorithm for the multiple-choice knapsack problem”. In: Eu-
ropean Journal of Operational Research 83 (2), pp. 394–410.

Pisinger, D. (1995b). David Pisinger’s Optimization Codes. url: https://web.archive.org/
web/20250219094749/http://hjemmesider.diku.dk/~pisinger/codes.html (visited on
02/19/2025).

Pisinger, D. (2005). “Where are the hard knapsack problems?” In: Computers & Operations
Research 32 (9), pp. 2271–2284.

15

Santini, A. and E. Malaguti (2024). “The min-Knapsack Problem with Compactness Constraints
and Applications in Statistics”. In: European Journal of Operational Research 312 (1), pp. 385–
397.

Santini, A. and P. Paronuzzi (2025). Source Code and Instances for the 0–1 Knapsack Problem
with Group Fairness. url: https://github.com/alberto-santini/kpgf.

Schäfer, L., T. Dietz, M. Barbati, J. R. Figueira, S. Greco, and S. Ruzika (2021). “The binary
knapsack problem with qualitative levels”. In: European Journal of Operational Research 289
(2), pp. 508–514.

Serramia, M., M. Lopez-Sanchez, J. Rodríguez-Aguilar, and P. Escobar (2019). “Optimising Par-
ticipatory Budget Allocation: The Decidim Use Case”. In: Artificial Intelligence Research and
Development. Ed. by J. Sabater-Mir, V. Torra, I. Aguiló, and M. González-Hidalgo. Vol. 319.
Frontiers in Artificial Intelligence and Applications. IOS Press, pp. 193–202.

Su, C. (2017). “From Porto Alegre to New York City: Participatory Budgeting and Democracy”.
In: New Political Science 39 (1), pp. 67–75.

van de Velde, S. and J. Worm (1994). Multi-period planning of road maintenance: a multiple-
choice multiple-knapsack problem. Tech. rep. 94-6. Laboratory of Production and Operations
Management, University of Twente.

Vanderbeck, F. and L. A. Wolsey (2010). “Reformulation and Decomposition of Integer Pro-
grams”. In: 50 Years of Integer Programming 1958-2008: From the Early Years to the State-
of-the-Art. Ed. by M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,
G. Reinelt, G. Rinaldi, and L. A. Wolsey. Springer Berlin Heidelberg, pp. 431–502.

Varian, H. (1974). “Equity, envy, and efficiency”. In: Journal of Economic Theory 9 (1), pp. 63–
91.

Xu, Z. (2013). “The knapsack problem with a minimum filling constraint”. In: Naval Research
Logistics 60 (1), pp. 56–63.

16

