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Abstract

Early large-scale swab testing is a fundamental tool for health authorities to assess the prevalence of a
virus and enact appropriate mitigation measures during an epidemic. The COVID-19 pandemic has shown
that the availability of chemical reagents required to carry out the tests is often a bottleneck in increasing
a country’s testing capacity. Further, demand is unevenly spread between more affected regions (which
require more tests they can perform) and less affected ones (which have spare capacity). These issues
hint at the opportunity of increasing test capacity via the optimal allocation of swabs and reagents to
laboratories. We prove that this is the case, proposing an Integer Programming formulation to maximise
the number of tests a country can perform and testing our approach on both real-life data from Italy and
synthetic instances. Our results show that increased inter-regional collaboration and a steadier supply of
reagents (i.e., coming from local production sites rather than international shipments) can dramatically
increase testing capacity. Accordingly, we propose short-term and long-term recommendations for policy
makers and health authorities.

Keywords: production planning; healthcare optimization; covid-19.

1 Introduction

Viruses are pathogens that replicate after penetrating the living cells of other organisms. Outside cells, a virus
is nothing more than genetic material (DNA or RNA) surrounded by protective layers of proteins and lipids.
Once inside a host cell, the virus uses the cell’s structures to replicate its genetic material and assembly its
protective layers, thus creating a copy of itself. At the end, it kills the cell to release both the original and the
copy.

Viruses cause a host of human diseases, ranging from the common cold to AIDS. Of particular interest for
this work is the recent Coronavirus disease 2019 (COVID-19) pandemic. Under particular circumstances, a
virus (and the disease it causes) can spread to a large part of a population in a short time, leading to an
epidemic. When the epidemic spreads across national borders and infects people worldwide, it’s termed a
pandemic. SARS-CoV-2, the virus spreading COVID-19, for example, possessed the right characteristics to
turn its associated disease into a pandemic: people carrying the virus don’t show symptoms for an average
of five days, during which they can spread the virus to others [42]; its basic reproduction number has been
estimated between 1.4 and 5.7, i.e., each infected person in turns infects an average of up to 5.7 people [31]; up
to 44% of patients show no symptoms at all during the infection period, making their diagnosis considerably
difficult [27].

A fundamental part of the response put in place to fight epidemics and pandemics is massive testing of the
population. When carriers of the virus remain asymptomatic while infecting others, as for COVID-19, testing
is one of the main tools health authorities can deploy to contain the spread of the disease [35]. Viruses such
as SARS-CoV-2 are RNA viruses, i.e., they contain a single strand of nucleotides rather than the “double helix”
typical of DNA. For this brief introduction, we call the four nucleotides composing the RNA chain with their
initials: A, C, G, U.

The quickest available test for RNA viruses uses real-time reverse transcription polymerase chain reaction
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(rRT-PCR). A popular test consists in collecting a sample of nasal secretions on a swab [7], looking for an
RNA subsequence which is unique to the virus. To identify this subsequence, the tester uses inverse RNA: a
sequence of nucleotides which pairs those they are looking for (remember that A pairs with U and C with
G). If the sample contains viral RNA, it will pair with the chain injected by the tester. Once the nucleotides
are paired, they effectively transform the single-strand RNA into double-strand DNA. To detect a significant
presence of the viral DNA, the genetic material goes through an amplification process, the polymerase chain
reaction [6]. Both transforming RNA into DNA, and amplifying it, cannot happen without certain enzymes,
commonly called reagents. While this simplified description is enough to introduce our problem, we refer the
reader to the reviews of Bustin [4] and Freeman, Walker, and Vrana [15] for a more accurate description of
the rRT-PCR technique. Figure 1 is an example of a protocol for rRT-PCR tests used by the United Kingdom’s
National Health Service.

Figure 1: United Kingdom National Health Service’s protocol for rRT-PCR analysis of samples from swabs, to
detect COVID-19.

During the COVID-19 pandemic, laboratory capacities and reagent availability have become the bottleneck for
increasing the number of tests in much of Europe and North America [12, 1, 41]. Therefore, health authorities
need to optimise the allocation of resources to their test laboratories, starting from the distribution of reagents
and the assignments of testing tasks. With this work, we use tools from Operational Research to help decision
makers maximise the number of tests they can conduct while limited by reagent availability and logistic
constraints.

Our main contributions are the following.

• We introduce the problem of maximising a country’s test capacity for rRT-PCR tests, during the out-
break of an epidemic. In such a situation, (i) reagent scarcity is often a bottleneck for testing, and
(ii) some regions are foci of the disease, requiring more tests than others. These two conditions pro-
vide an opportunity to optimise the allocation of reagents and swabs, with the aim of maximising the
number of swabs tested and reducing the wait time for results.

• We provide an Integer Programming formulation for this problem, extend it to consider the real-world
case in which the health-care system is decentralised at the regional level, and consider a hierarchical
multi-objective version of the problem.
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• We conduct two case studies to validate our approach. In the first one, we use real-life data referring to
the Italian situation during the COVID-19 pandemic. Our analysis confirms that fostering inter-regional
collaboration can increase by up to +40% the number of swabs tested during a 13-day planning horizon.
In the second one, we use synthetic data to determine the most important factors which impact testing
capacity. We conclude that a strong industrial network able to provide a steady supply of reagents
provides the greatest advantage, vs. procuring reagents via sporadic shipments, even when the total
purchased quantity stays the same. Further, countries with limited lab infrastructure should prioritise
acquiring more machines and training more personnel, while increasing inter-regional coordination
helps those countries with a developed laboratory network.

• We make available both our data and the code we used, under an open-source license [33].

2 Problem description

In our problem, a set of laboratories 𝐿 = {1, . . . , |𝐿 |} has to perform rRT-PCR tests on swabs during a time
horizon𝑇 = {1, . . . , |𝑇 |} (each time unit corresponds to a day). We assume, wlog, that for each swab a lab needs
one unit of reagent. Each lab 𝑙 ∈ 𝐿 starts with a reserve 𝜌𝑙0 of reagent at the beginning of the time horizon. The
labs can receive further units of reagent from factories 𝑅 = {1, . . . , |𝑅 |}, limited by their production capacity.
In this work we are going to assume that each factory 𝑟 ∈ 𝑅 produces 𝑓𝑟𝑡 units of reagent on day 𝑡 ∈ 𝑇 .
Factories also store an initial amount 𝜌𝑟0 of reagent at the beginning of the planning horizon. Note that a
factory can also model other types of facilities; for example, a warehouse receiving new reagents once per
week, or even a one-time shipment from a foreign country.

Each laboratory 𝑙 has a capacity 𝑄𝑙 of swabs it can test during one day. This capacity applies even if the lab
has a larger amount of reagent, due to limitations on available machinery and workforce. The effective testing
capacity of 𝑙 , then, is the minimum between 𝑄𝑙 and the amount of reagent available at 𝑙 .

A lab 𝑙 ∈ 𝐿 is tasked with testing 𝑚𝑙𝑡 swabs on day 𝑡 , according to a predefined schedule to meet epidemi-
ological needs. If a laboratory doesn’t have enough reagent to test all the swabs, the decision-maker has
three options: (i) moving some reagent from a factory to the lab, (ii) moving some swabs to another lab, or
(iii) storing the swabs and schedule their testing for another day.

Remark. We assume the planner has already chosen the laboratory to which they assign the swabs. More
generally, though, a planner might need that swabs be tested in a given region, without any constraint on which
specific lab performs the test, as long as they are geographically close to the point where the swabs were collected.
In Section 4.1, we will extend the model to take into account this general case, making the number of swabs
assigned to each lab a decision variable.

The amount of reagent and swabs that a planner can move between locations each day is bounded by 𝑞rg and
𝑞sw, respectively.

Remark. We assume that quantities 𝑞rg and 𝑞sw are global capacity limits on the total amount of reagent and
swab movements. Such an assumption rests on the observation that, during an epidemic, a central decision-maker
manages logistic resources and can reallocate them from one area to another. If this were not the case, it wouldn’t
be hard to enforce local limits, e.g., on the number of swabs that the planner can move out of a single laboratory.
In a model extensions presented in Section 4.1, locations are partitioned in regions and we impose region-specific
capacity limits.

Given this input data, a planner must determine, for each day of the planning horizon, (i) how many units of
reagent to move from the factories to the laboratories, and (ii) howmany swabs to move between laboratories,
with the aim of maximising the number of tests carried out.

Remark. While the main objective of the planner is to maximise the number of swabs tested, it’s possible to
account for secondary objectives. For example, because effective testing must be both large-scale and quick, one
might want to minimise the average time swabs spend waiting at lab facilities. In Section 4.2 we propose a multi-
objective extension of the problem in which, among all solutions which maximise the number of tests carried out,
we select the one with lowest average waiting time.
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3 Model formulation

We propose an Integer Programming model using the following sets of variables. The number of units of
reagent moved from factory 𝑟 ∈ 𝑅 to lab 𝑙 ∈ 𝐿 on day 𝑡 ∈ 𝑇 is denoted by variable 𝑥𝑟𝑙𝑡 ∈ N. Variables
𝑦𝑙1𝑙2𝑡 ∈ N represents the number of swabs going from laboratory 𝑙1 ∈ 𝐿 to 𝑙2 ∈ 𝐿 on day 𝑡 ∈ 𝑇 . The quantities
of reagent stored, respectively, at factory 𝑟 ∈ 𝑅 and lab 𝑙 ∈ 𝐿 on day 𝑡 ∈ 𝑇 are denoted by variables 𝜌𝑟𝑡 ∈ N and
𝜌𝑙𝑡 ∈ N. Variables 𝑧𝑙𝑡 ∈ N represent the number of swabs stored at lab 𝑙 ∈ 𝐿 during day 𝑡 ∈ 𝑇 . Laboratories
store swabs if they cannot carry out the tests on day 𝑡 because of a lack of reagents necessary for the rRT-
PCR procedure. We assume wlog that, at the beginning of the time horizon, labs don’t have any stored swab
(𝑧𝑙0 = 0 for all 𝑙 ∈ 𝐿).

Maximising the number of tests corresponds to minimising the number of swabs stored at labs at the end of
the time horizon. The objective function, then, is:

min
∑
𝑙 ∈𝐿

𝑧𝑙 |𝑇 | . (1)

The bounds on the quantities of reagent and swabs moved each day translate into the following two con-
straints: ∑

𝑟 ∈𝑅

∑
𝑙 ∈𝐿

𝑥𝑟𝑙𝑡 ≤ 𝑞rg ∀𝑡 ∈ 𝑇 (2)∑
𝑙1∈𝐿

∑
𝑙2∈𝐿

𝑦𝑙1𝑙2𝑡 ≤ 𝑞sw ∀𝑡 ∈ 𝑇 . (3)

The next constraints limit the number of tests carried out at each lab on a given day, based on the quantity
of reagent available and lab capacities. To this end, it’s convenient to introduce an auxiliary variable𝑤𝑙𝑡 ∈ N
representing the number of tests carried out at lab 𝑙 ∈ 𝐿 on day 𝑡 ∈ 𝑇 . Quantities 𝑚𝑙𝑡 (number of tests
requested each day),

∑
𝑙 ′∈𝐿, 𝑙 ′≠𝑙 𝑦𝑙 ′𝑙𝑡 (swabs moving from 𝑙 to other labs),

∑
𝑙 ′∈𝐿, 𝑙 ′≠𝑙 𝑦𝑙𝑙 ′𝑡 (swabs moving from

other labs to 𝑙 ), 𝑧𝑙,𝑡−1 (swabs backlog from the previous day) and 𝑧𝑙𝑡 (swabs stored at the end of the day)
uniquely determine the value of𝑤𝑙𝑡 , according to the linking relation

𝑧𝑙,𝑡−1 +𝑚𝑙𝑡 +
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙 ′𝑙𝑡 = 𝑧𝑙𝑡 +𝑤𝑙𝑡 +
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙𝑙 ′𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 . (4)

Figure 2 shows this relation visually. In the figure, each node represents lab 𝑙 on a different day and arrows
display the flow of swabs in and out of the laboratory.

𝑧𝑙,𝑡−2

𝑚𝑙,𝑡−1 +
∑
𝑙′∈𝐿
𝑙′≠𝑙

𝑦𝑙′,𝑙,𝑡−1

𝑙, 𝑡 − 1

𝑤𝑙,𝑡−1 +
∑
𝑙′∈𝐿
𝑙′≠𝑙

𝑦𝑙,𝑙′,𝑡−1

𝑧𝑙,𝑡−1

𝑚𝑙𝑡 +
∑
𝑙′∈𝐿
𝑙′≠𝑙

𝑦𝑙′𝑙𝑡

𝑙, 𝑡

𝑤𝑙𝑡 +
∑
𝑙′∈𝐿
𝑙′≠𝑙

𝑦𝑙𝑙′𝑡

𝑧𝑙𝑡

𝑚𝑙,𝑡+1 +
∑
𝑙′∈𝐿
𝑙′≠𝑙

𝑦𝑙′,𝑙,𝑡 + 1

𝑙, 𝑡 + 1

𝑤𝑙,𝑡+1 +
∑
𝑙′∈𝐿
𝑙′≠𝑙

𝑦𝑙,𝑙′,𝑡+1

𝑧𝑙,𝑡+1

Figure 2: Linking relation between parameter𝑚 and variables 𝑦, 𝑧 and𝑤 for a lab 𝑙 ∈ 𝐿 at time intervals from
𝑡 − 1 to 𝑡 + 1.
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With linking variables𝑤𝑙𝑡 , we can constrain the number of tests performed with the following inequalities:

𝑤𝑙𝑡 ≤ 𝜌𝑙,𝑡−1 +
∑
𝑟 ∈𝑅

𝑥𝑟𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (5)

𝑤𝑙𝑡 ≤ 𝑄𝑙 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 . (6)

Next, we consider flow balance equations analogous to eq. (4), relative to the number of reagent stored at
factories and laboratories:

𝜌𝑟,𝑡−1 + 𝑓𝑟𝑡 = 𝜌𝑟𝑡 +
∑
𝑙 ∈𝐿

𝑥𝑟𝑙𝑡 ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (7)

𝜌𝑙,𝑡−1 +
∑
𝑟 ∈𝑅

𝑥𝑟𝑙𝑡 = 𝜌𝑙𝑡 +𝑤𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 . (8)

Constraint (7) states that the quantity of reagent in the factory’s inventory at the beginning of the day, plus
the quantity produced, is equal to the quantity in inventory at the end of the day, plus the quantity shipped
to the labs. Constraint (8) equates, on the left-hand side, the quantity of reagent in the lab’s inventory at the
start of the day and the total amount received with, on the right-hand side, the inventory at the end of the day,
plus the quantity of reagent used (or, which is the same, the number of tests performed). Note that, because
all variables are non-negative, constraint (8) makes constraint (5) redundant.

Model (1)–(8), together with the following variable domain definitions, is the Base Model for our problem.

𝑥𝑟𝑙𝑡 ∈ N ∀𝑟 ∈ 𝑅, ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (9)
𝑦𝑙1𝑙2𝑡 ∈ N ∀𝑙1 ∈ 𝐿, ∀𝑙2 ∈ 𝐿 \ {𝑙1}, ∀𝑡 ∈ 𝑇 (10)
𝜌𝑟𝑡 ∈ N ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (11)

𝜌𝑙𝑡 , 𝑧𝑙𝑡 ,𝑤𝑙𝑡 ∈ N ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (12)

3.1 Model strengthening

A disadvantage of the Base Model (1)–(12) is that it suffers from symmetry. For example, consider any solution
with slack capacity to transport swabs between two labs 𝑙1, 𝑙2 ∈ 𝐿 during a day 𝑡 ∈ 𝑇 . One can get another
solution of the same cost in which, on day 𝑡 , 𝑙1 sends one more swab to 𝑙2 and 𝑙2 sends one more swab to 𝑙1.
To reduce symmetry, we impose two restrictions on the transport of swabs between labs: (i) a lab 𝑙 can ship
out swabs only if it’s already working at full capacity, i.e., it’s testing 𝑄𝑙 swabs or it ran out of reagent; (ii) a
lab can only send or receive swabs during a given day, but not both.

To tackle the first restriction, we introduce indicator variables 𝛾𝑙𝑡 ∈ {0, 1}, which take value 1 iff lab 𝑙 ∈ 𝐿 is
running at full capacity during day 𝑡 ∈ 𝑇 . These variables link to variables𝑤 and 𝜌 via the following indicator
constraints (see, e.g., [3]):

𝛾𝑙𝑡 = 0 → 𝑤𝑙𝑡 ≤ 𝑄𝑙 − 1 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (13)
𝛾𝑙𝑡 = 0 → 𝜌𝑙𝑡 ≥ 1 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (14)
𝛾𝑙𝑡 = 1 →

(
𝑤𝑙𝑡 = 𝑄𝑙

)
∨
(
𝜌𝑙𝑡 = 0

)
∀𝑙 ∈ 𝐿 ∀𝑡 ∈ 𝑇 . (15)

The restriction is, then, enforced with another indicator constraint:

𝛾𝑙𝑡 = 0 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙𝑙 ′𝑡 = 0 ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 . (16)

Constraint (16) guarantees that laboratory 𝑙 cannot ship out swabs unless it’s at full capacity.

To address the second restriction, we can add two more sets of indicator variables and constraints, keeping
track of whether a lab sends out or receives swabs. Note that the black-box commercial solver we use (Gurobi)
converts all indicator constraints presented in this section into linear constraints. The new variables are
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𝛾+
𝑙𝑡
, 𝛾−

𝑙𝑡
∈ {0, 1}, which assume value 1 iff, respectively, lab 𝑙 sends or receives swabs on day 𝑡 . The necessary

constraints to link these variables and enforce the restriction are:

𝛾+𝑙𝑡 = 1 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙𝑙 ′𝑡 ≥ 1, 𝛾+𝑙𝑡 = 0 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙𝑙 ′𝑡 = 0 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (17)

𝛾−𝑙𝑡 = 1 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙 ′𝑙𝑡 ≥ 1, 𝛾−𝑙𝑡 = 0 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙 ′𝑙𝑡 = 0 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (18)

𝛾+𝑙𝑡 + 𝛾
−
𝑙𝑡 ≤ 1 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 . (19)

Constraint (19) enforces that each lab, on each day, cannot both send and receive swabs. Note that this
restriction also avoids that a laboratory works as a relay, receiving and re-shipping swabs between otherwise
distant labs.

4 Model extensions

In this section we propose extensions to the model presented above, to account for more realistic scenarios.

4.1 Regional partitioning

In Section 2wementioned two limitations of the BaseModel whichmight not hold true in real-life applications.
The first limitation is that there is a fixed quantity of swabs assigned to each laboratory. In most countries,
central or regional health authorities oversee and plan testing. Swabs collected in a region, for example, might
be sent for testing to any laboratory in the same region. The second limitation is that tests (and reagents) can
move overnight from any location to any other location subject to global capacity limits. When applying the
model to large countries, though, logistic constraints might impose that movement of material only happen
between geographically close locations.

To address these aspects, we extend the initial problem formulation as follows. The set of laboratories is
partitioned as 𝐿 = 𝐿1 ∪ . . . ∪ 𝐿𝑛 (with 𝐿𝑖 ∩ 𝐿 𝑗 = ∅ for any two 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, 𝑖 ≠ 𝑗 ). We call each set
composing the partition a region.

The planner receives as input the number of swabs to test each day in each region 𝐿𝑖 , denoted as𝑚𝑖𝑡 , but must
determine how to split the swabs between the region’s labs. A parameter 𝛿𝑟𝑙 ∈ {0, 1} determines whether a
factory 𝑟 ∈ 𝑅 can ship reagent overnight to laboratory 𝑙 ∈ 𝐿. Analogously, parameter 𝜇𝑙1𝑙2 ∈ {0, 1} determines
whether two labs 𝑙1, 𝑙2 ∈ 𝐿 can send each other swabs overnight.

In our model, logistic capacities refer to each region. We consider, respectively, quantities 𝑞rg𝑖 and 𝑞sw𝑖 of
reagent and swabs that can be shipped to region 𝑖 ∈ {1, . . . , 𝑛} in a day. Depending on the logistic infrastruc-
ture, a planner could specify bounds at different levels of aggregation and for both inbound and outbound
movements. For example, one might consider a maximum number of reagents shipped out of a factory, or
a group of factories. Although we present here regional-level inbound capacities, our formulation is flexible
enough to allow a wide array of modelling options. We present an Extended Model, taking into account the
above considerations, in Appendix A.

4.2 Multi-objective model

As discussed in Section 2, the number of tests carried out is not the only important parameter for an effective
testing campaign. Having fast results also helps assessing the disease’s spread and enact appropriate and
well-timed confinement and mitigation measures.

We propose, then, a Multi-Objective Optimisation (MOO) approach to the problem. For a recent review of
MOOapplications in optimisation, we refer the reader toGunantara [16] andKalyanmoy [19]. In the following,
we consider the hierarchical objective approach, in which the planner first optimises for their main objective
(number of tests performed) and then, among all the solutions which give an optimal objective value, looks
for the one optimising a secondary objective (mean test waiting time).

6



Let 𝑍 ∗ be the optimal objective value of model (22)–(44). We can obtain the solution to the hierarchical
problem by solving the following Hierarchical Model:

min
∑
𝑙 ∈𝐿

∑
𝑡 ∈𝑇

𝑧𝑙𝑡 (20)

s.t.
∑
𝑙 ∈𝐿

𝑧𝑙 |𝑇 | = 𝑍 ∗ (21)

(23)–(44),

where eq. (20) minimises the sum of all amounts of swabs stored at labs waiting to be tested and eq. (21)
imposes that the considered solutions match the optimal value with respect to objective function (22). Ob-
jective function (20) is equivalent to minimising the average swab waiting time because (21) fixes the total
number of swabs tested. Note that, when minimising the primary objective, two untested swabs collected,
respectively, on the first and last day of the time horizon would contribute the same penalty. Adding the
secondary objective avoids solution where old swabs remain untested for a long time, while newer ones get
tested quickly.

5 Related work

Our problem, described in Section 2, resembles superficially problems in the area of production planning,
material requirement planning and supply chain optimisation (for a complete overview on these topics see,
e.g., Pochet and Wolsey [28]). In our case, carrying out tests corresponds to manufacturing a product using
two raw materials (swabs and reagents); for us, though, the finished product demand (tested swabs) always
matches one of the raw materials’ availability (swabs), while the other (reagents) acts as a bottleneck for pro-
duction. As in production planning, we deal with the flow of goods over time, including shipments of raw
material and inventory carry-over. We also allow the creation of backlogs, i.e., the storage of swabs which
cannot be tested on the day of collection. Other characteristics of our problem, however, aren’t frequently
considered in production planning optimisation: the geographic position of suppliers and production facili-
ties (in our case, laboratories) and their regional subdivision; the possibility of reassigning orders between
facilities, subject to logistics constraints; the uneven demand between regions.

Most importantly, unlike problems in production planning, we disregard costs and focus exclusively on max-
imising production (in our case, number of tests). To this end, we don’t consider transport, production, storage,
raw material, order placement, personnel, nor opportunity costs, which instead have a prominent role when
optimising commercial supply chains and production processes. In the standard case, in fact, the aim of the
planner is pure cost minimisation [28] and satisfying the demand in full could even be sub-optimal, if the cost
of producing one more unit is larger than the opportunity cost of missing a sale. Other approaches commonly
used in production planning include multi-objective optimisation in which cost minimisation is tackled to-
gether with secondary objectives, such as demand satisfaction [25], steadiness of production rates [38] or
environmental performance [2]. Even in the healthcare sector, if considering times when authorities are not
responding to an emergency, costs are taken into account. For example, Zhao et al. [46] consider a drugs
production planning problem in which they minimise both costs (avoiding over-production of drugs) and the
duration of the trial. Other works (e.g., [10, 13]) have considered the production and supply optimisation
problems in the clinical area, but have focused on production and distribution of drugs in “normal” times,
rather than during an emergency response to a sudden epidemic event.

Literature focusing specifically on allocation of medical resources during emergencies mainly concentrates
on the distribution of (life-saving) medical devices. As such, most models optimise the assignment of existing
material to hospitals or individual patients, rather than the production and allocation of new material. Xiang
and Zhuang [44], for example, consider the problem of assigning medical resources to patients, taking into
account that the conditions of patients left untreated will deteriorate over time. Cao and Huang [5] use
a simulation approach in which they consider different strategies to allocate scarce medical resources (e.g.,
milder patients first, critical patients first, randomly) and complement an analysis of the utility of each strategy
with ethical considerations on prioritising some patients over others.
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In the wake of the COVID-19 epidemics, the optimisation community has rushed to provide decision support
tools for decision-makers involved in the fight against the virus. Similar to our work, researchers at MIT’s
Operations Research Center [9, 8] have shown the advantages of inter-regional collaboration in sharing auto-
matic ventilators across U.S. states. Mehrotra et al. [22] consider the same problem and use a stochastic model
to show how sharing ventilators across states, even when each state is averse to the risk of not having enough
machines for its own patients, can reduce the probability of shortages. The problem of allocating ventilator
during influenza epidemics was already considered in the literature, e.g., by Huang et al. [18], Meltzer et al.
[23], and Zaza et al. [45].

Lampariello and Sagratella [21] study a problem that, like ours, concerns diagnostic tests during the COVID-
19 pandemics. The authors consider the problem of deciding how many swabs each region should collect
to provide an accurate estimate of the prevalence of the disease among its population, while restricted by
a nation-wide capacity limit on the number of tests performed. The problem is motivated by the practice
employed in Italy during the early period of the epidemic, of double-checking at one single central laboratory
(located in Rome) the results of each positive test conducted by local labs. The capacity of the central lab
limits, in this case, the number of total expected positive results coming from all other labs in the country.
Note how a decision maker working under the assumptions of [21] can use the model therein to generate
regional demands𝑚𝑖𝑡 , which they can then feed to our model.

Finally, Seccia [34] considers the problem of devising balanced rosters for nurses in hospitals while, due to the
virus outbreak, there is both a peak in demand for nurses’ services and fewer available health professionals,
because many are COVID-19-positive and confined at home.

6 Computational analysis

Wewant to assess the impact of optimising the allocation of reagents and swabs to laboratories on the testing
capacity of a country. We present two case studies. In the first, we perform an analysis on a realistic dataset
relative to the Italian response to the COVID-19 pandemic, during the period from April 1st to April 13th, 2020.
In the second, we use synthetic data to do a sensitivity analysis highlighting the decisions a planner can take
to most increase testing capacity and lower waiting times. The datasets and the code used are available at
Santini [33]. We use the Hierarchical Model, which we solve using commercial solver Gurobi [17] with a time
limit of 15 minutes for the primary and 5 minutes for the secondary objective, on a laptop equipped with a
4-core Intel i7 processor running at 1.6GHz.

6.1 Italy, April 1–13, 2020

We create a set of instances based on data sources relative to the COVID-19 pandemic in Italy [30, 24, 26,
36, 11]. We use data for the period 01–13 April, 2020 for the entire national territory. Figure 3a shows
the distribution of laboratories and reagent factories in Italy [24]: dots represents labs which are officially
authorised to execute COVID-19 swab tests by the Italian Health Ministry, while stars represent factories
whose testing kits (including reagents, extraction kits, probes, negative controls) have been certified for use
in COVID-19 swab testing. Figure 3b reports the number of swabs analysed in Italy during the period 01–13
April, 2020, on a regional basis. We note that there is no publicly available data on the average wait times
between swab collection and analysis.

We analyse the number of swabs tested, day by day and region by region, using five different scenarios. The
first uses the official numbers released by Italy’s “Dipartimento della Protezione Civile”, which we refer to as
Real Data. Next, we consider the output obtained by the Hierarchical Model, under the following hypotheses.
Swabs collected in a region cannot be sent to other regions, but can be allocated to any laboratory within the
collection region (for this reason we label this data as Model - Regional). In modelling terms, this corre-
sponds to setting 𝜇𝑙1𝑙2 = 1 if and only if, for two labs 𝑙1, 𝑙2 ∈ 𝐿, there is a region 𝐿𝑘 such that 𝑙1, 𝑙2 ∈ 𝐿𝑘 . We
use this hypothesis to model how testing happens in Italy, with local laboratories and regional “reference lab-
oratories” collecting swabs from all-over the region and providing double checks before non-urgent hospital
admissions (emergency patients are admitted even before test results are ready) and discharges. Also remind
that the Italian healthcare system is managed on a regional basis, with ample autonomy given to the local
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(a)Map of rRT-PCR laboratories (dots) and reagent fac-
tories (stars).

(b) Number of swabs analysed per region, over the period from
April, 1 to April, 13, 2020.

Figure 3: Regional-level data for Italy.

(a) Swabs can only be transported between labs in the same
region.

(b) Laboratories in the same region or within 200Km can
send swabs.

Figure 4: Map of testing laboratories in Italy. An edge connects two laboratories if they can send swabs
between each other overnight.

9



health authorities but little inter-regional interaction [14]. We assume that labs can procure reagents from
their geographically closest factory, and that procurement is optimised in a centralised way, with the planner
deciding the quantities of reagent sent to each laboratory, to maximise the number of tested swabs. Because
news sources and press releases by regional health authorities (we found statements by authorities of Basil-
icata, Campania, Emilia-Romagna, Marche, Lombardia, Piemonte, Puglia, Sardegna, Sicilia, Toscana, Umbria
and Veneto, i.e., 12 out of the 20 Italian regions) hint that reagents were a major bottleneck in expanding test
capabilities, we expect this model to be able to increase the number of swabs tested even if it doesn’t allow
inter-regional swab reassignment, just by optimising reagents assignment. Figure 4a shows how laboratories
cluster within each region: an edge between two laboratories means that they belong to the same region.

Finally, we consider the output obtained from the Hierarchical Model, but allowing for reallocation of swabs
between laboratories in different regions. This assumption effectively means that regional daily demand
can be shared across regions. Because swabs would need to move within a short time (e.g., overnight) we
put limitations on the inter-laboratory distance that allows swab transfer. We consider three thresholds of
100Km, 200Km and 400Km and we denote the corresponding data as Model - 100Km, Model - 200Km and
Model - 400Km. (We make an exception for the island region of Sardinia, for which moving swabs outside
of the region would be unfeasible even if there are other laboratories within 400Km.) Figure 4b shows how
laboratories can transfer swabs when using the 200Km threshold. Compare Figures 4a and 4b to note how
inter-regional collaboration gives a central planner more opportunities to move swabs between regions in
case there should be a day with a demand peak in a particular area. We refer the reader to [33] for the full
description of the instance generation process and to [32] for an interactive dashboard presenting the results
of the analysis.

Figure 5: Number of swab tests performed on the national territory, per day. The dashed line reports official
numbers from the Civil Defence agency. The other lines represent the results from applying the Hierarchical
Model with intra-regional (orange column) and inter-regional (green, pink and blue lines) swab transfers. line
inter-regional transfer radii considered are 100, 200 and 400Km.

Figure 5 shows the number of swabs tested, day-by-day, when using our proposed models Regional, 100Km,
200Km, and 400Km. Note how Model - 400Km fully uses the system’s capacity during the last period of the
time horizon, where the number of tested swabs becomes a flat line. During some days, a model with fewer lab
transfer capabilities gives more tested swabs than a model in which more transfers are allowed. For example,
on April 6, using Model - 400Km results in fewer tests than Model - 200Km and Model - 100Km. This is not
surprising if we consider that the models maximise the number of swabs tested over the whole planning
horizon, even if this results in fewer tests on any particular day.

Table 1 reports detailed results of the analysis. Each row corresponds to one day, and the columns list the
real data and the results obtained using the model. Columns #tests report the number of swabs tested during
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Real Data Model - Regional Model - 100Km Model - 200Km Model - 400Km
Day of April #tests #tests %gain #tests %gain #tests %gain #tests %gain

1 34455 43202 25.39 47110 36.73 47110 36.73 47110 36.73
2 39809 46916 17.85 50674 27.29 50674 27.29 50674 27.29
3 38617 44567 15.41 53055 37.39 53055 37.39 53055 37.39
4 37375 44492 19.04 49190 31.61 49190 31.61 49190 31.61
5 34237 40463 18.19 44187 29.06 44187 29.06 44187 29.06
6 30271 42433 40.18 45835 51.42 45835 51.42 45835 51.42
7 33713 42414 25.81 47353 40.46 47353 40.46 47353 40.46
8 51680 55454 7.30 60163 16.41 60163 16.41 60163 16.41
9 46244 50207 8.57 53528 15.75 53528 15.75 53528 15.75
10 53495 55385 3.53 62666 17.14 62666 17.14 62666 17.14
11 56609 55332 -2.26 60536 6.94 60536 6.94 60536 6.94
12 46720 53292 14.07 56175 20.24 56175 20.24 56175 20.24
13 36717 43582 18.70 56287 53.30 56287 53.30 56287 53.30

Total 539942 617739 14.41 686759 27.19 709996 31.49 750464 38.99

Table 1: Number of swabs tested on the national territory, day by day, from official real data and from the
results obtained using our model. Columns #tests represent the number of swabs tested each day. Columns
%gain are the percentage gains obtained using the model, compared to the real data.

Figure 6: Number of swab tests performed in four Italian regions. The dashed line reports official numbers
from the Civil Defence agency. The solid lines represents results obtained with our Hierarchical Model allow-
ing intra-regional (orange line) and inter-regional (blue line) swab transfers.
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that day. Columns %gain are the percentage gains obtained using the models, compared to the number of
swabs actually tested in Italy in the described period. The last row gives aggregate results for the whole
country. Note how using optimisation techniques results in a testing capacity increase between 14% and 39%,
under the hypotheses explained above. In particular, assuming that tests in Italy were largely limited by the
unavailability of reagents due to a poor allocation of supplies and low inter-regional collaboration, optimising
these two aspects can allow to perform up to 250000 more tests (the increase between Real Data and Model -
400Km) during 13 days.

Figure 6 shows example results from the Regional and 400Km models, for four representative Italian regions
from the north (Piemonte and Emilia-Romagna), the centre (Lazio) and the south (Sicilia) of the country. Each
chart reports the number of swabs analysed per day. In these regions, during the last period of the planning
horizon, the models use the full laboratory capacity and their curves appear flat, i.e., the limiting factor isn’t
reagent availability anymore, but structural limitations such as testing machines or lab personnel. Note how,
in Sicily during the middle period, the 400Km model provides a solution with fewer tested swabs than the
Regional model and the Real Data, for two days. However, there was a catch-up on the tests during the last
part of the planning horizon, resulting in more tests carried out in total.

6.2 Synthetic data

By conducting a scenario analysis on synthetic data, we want to learn how some aspects of the healthcare
system of the area hit by an epidemic can affect its ability to perform large-scale testing of the population.
The factors we analyse are:

1. The effects of having a healthcare system with a large level of independent decision-making at the sub-
national level (as is the case, e.g., of Italian regions, Spanish autonomous communities, German lander
or the United States) and the benefits of increased cross-regional collaboration, common planning, and
resource sharing.

2. The capillarity and production capacity of bio-chemical and pharmaceutical industries able to prepare
the reagents needed to carry out rRT-PCR tests, especially in light of the increasing trend to off-shore
such manufacturing capabilities to developing countries (see, e.g., [20, 40]).

3. Reagent-independent laboratory capacity, i.e., the test capacity deriving by the number of available
machines and personnel. This corresponds to the full laboratory capacity in the ideal case in which any
amount of reagents were immediately available.

4. The logistic capabilities of the country, i.e., how labs can procure reagents frommanufacturing facilities
and transfer swabs away from saturated labs.

6.2.1 Instance generation

We list in the following the characteristics of the instances we generate. We consider |𝐿 | = 100 laboratories,
which we distribute in the square 𝑆 = [0, 100]2 in the euclidean plane as explained below. First, we define
parameter 𝜆L×R, which is the expected size of regions, i.e., the expected number of labs in each region. Next,
we select 𝑛 =

⌊
|𝐿 |/𝜆L×R

⌋
random points in [10, 90]2 which we use as initial centroids for the regions (note

how we excluded the external boundary of 𝑆). We place the labs in 𝑆 by first choosing a random centroid and
then a random point in 𝑆 which lies at distance of at most 20 from the centroid, and repeating this procedure
|𝐿 | times. In this way, we aim at placing clusters in loose regional clusters. To complete the assignment of
labs to regions, we assign each lab to its closest centroid.

Another parameter, 𝜆F×R, determines how distributed is the country’s reagent production capacity; this pa-
rameters represents the expected number of reagent factories per region. We place |𝑅 | = 𝑛 · 𝜆F×R factories
at random in 𝑆 . Figure 7a shows an example distribution of labs and factories. Dots represent laboratories,
stars denote factories, and lines are the Voronoi boundaries (see, e.g., [29, Ch. 5]) associated with regional
centroids (i.e., the lines delimit the regions).

To determine the demand of each region, we assume that 40% of the regions will have a criticality, such
as a focus of the illness, and will thus require more tests. (For example, during the COVID-19 pandemics,
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(a) Spatial set-up of the instance. Dots represent laborato-
ries, with their size proportional to the average daily de-
mand in their region. Stars represent factories and lines
are regional boundaries.

(b) Daily reagent production. Each smaller bar represents
one factory and the larger bars represent the total daily pro-
duction.

Figure 7: Example of a synthetic instance with bumpy reagent production at factories.

the Chinese province of Wuhan, northern Italian regions, the autonomous communities of La Rioja, Madrid
and Castilla-La Mancha in Spain, or the states of Washington and New York in the U.S.A. were foci in their
respective countries.) The other regions might, instead, have some spare capacity which they can use, if
resources are properly coordinated, to help saturated regions. Let 𝑚̄ = 100 be an ideal number of tests to
perform per lab per day (assuming ideal conditions), and let |𝐿𝑖 | be the number of labs in region 𝑖 . The
number of tests requested in region 𝑖 on day 𝑡 is

𝑚𝑖𝑡 =

{
𝑚̄ · |𝐿𝑖 | · 2 · 𝜀 for 40% randomly chosen regions
𝑚̄ · |𝐿𝑖 | · 0.75 · 𝜀 for the remaining 60% of regions,

where 𝜀 is a noise term distributed according to a truncated normal distribution between 0.95 and 1.05. The
definition of𝑚𝑖𝑡 is justified by the assumption that the number of swabs to test depends on regional population,
which correlates positively with the number of laboratories in the region. The dot size in Figure 7a is directly
proportional to the lab’s region average demand in the example instance; note how two bordering regions are
“critical”.

Lab capacities are then defined as a fraction of the ideal number of tests assigned to each lab: 𝑄𝑙 = 𝑚̄𝜆LC,
where 𝜆LC is a parameter. Values of the parameter larger than 1 correspond to a situation in which reagent
availability is the main bottleneck for testing, while smaller values indicate that laboratories have structural
deficiencies which limit the number of swabs they can test, even when reagents are abundant. Each lab can
procure reagents from its 𝜆LF closest factories, and can send swabs to other laboratories in the same region.
A parameter 𝜆LL gives the maximum distance at which two labs in different regions can exchange swabs. In
particular, when 𝜆LL = 0 we forbid cross-regional collaboration and sharing of testing capacity.

Regional inbound capacities for reagents (𝑞rg𝑖 ) and for swabs (𝑞sw𝑖 ) are determined as:

𝑞
rg
𝑖 =

{
𝑚̄ · |𝐿𝑖 | for 80% of the regions

𝑚̄ · |𝐿𝑖 | · 0.75 for 20% “impervious” regions
𝑞sw𝑖 =

{
𝑚̄ · |𝐿𝑖 | · 0.25 for 80% of the regions

𝑚̄ · |𝐿𝑖 | · 0.10 for 20% “impervious” regions,

We assume here that the “impervious” regions have tighter logistical constraints; for example, islands, moun-
tainous areas, or regions with poorer infrastructure. We set the initial amount of reagent stored at labs and
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Parameter Description Num values Values

|𝑇 | Time horizon length 4 5, 7, 10, 14
𝜆L×R Labs per region 3 5, 10, 20
𝜆F×R Factories per region 4 0.1, 0.25, 0.5, 1
𝜆LC Lab capacity multiplier 7 0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5
𝜆LF Number of factories supplying

each lab
3 1, 2, 3

𝜆LL Radius for inter-regional swab
transfers

6 0, 5, 10, 15, 20, 25

𝜆FP Factory production multiplier 5 0.8, 0.9, 1, 1.1, 1.2
𝜆PP Factory production pattern 2 steady, bumpy

Table 2: Synthetic instance generation parameters.

factories to a minimal amount, as follows:

𝜌𝑙0 = 𝑚̄ · 𝜀 𝜌𝑟0 = 𝑚̄ · 𝜆L×R
𝜆F×R

· 𝜀,

where 𝜀 is distributed according to a truncated normal distribution between 0 and 0.25. Such a choice corre-
sponds to labs and factories having a small fraction of their daily, respectively needed and produced, reagents
in the initial stock — a situation that can commonly occur during an epidemic, when safety stocks are quickly
depleted.

Last, we describe howwe determine factories’ daily production. We propose two production patterns (selected
via parameter 𝜆PP): steady and bumpy. Under the steady pattern, each factory 𝑟 produces 𝑓𝑟𝑡 = 𝑚̄ · 𝜆L×R𝜆F×R

·𝜆FP · 𝜀
units of reagent each day, where 𝜀 follows a truncated normal distribution between 0.95 and 1.05 and 𝜆FP is a
parameter. Note how 𝜆FP < 1 drives the total factory production capacity to be smaller than the total demand,
indicating a situation in which there are fewer reagents than the nation needs. Values of 𝜆FP ≥ 1 drive the
total reagents production towards meeting the demand; in this case, tests not performed because of lack of
reagents are more likely due to poor resource allocation over the national territory, rather than an absolute
scarcity of reagents. Under the bumpy pattern, for each factory we first choose two random days of the week
𝜏1𝑟 , 𝜏

2
𝑟 ∈ {0, . . . , 6}, which we call “release days”. The factory will produce reagents at the same rate as under

the steady pattern, but won’t make them available until the current day 𝑡 corresponds to one of the two 𝜏1𝑟 , 𝜏2𝑟
(i.e., 𝑡 = 0 mod 𝜏1𝑟 or 𝑡 = 0 mod 𝜏2𝑟 ). At that point, it’s ready to ship all the reagents produced since the last
release day. This second pattern simulates a situation in which it’s infeasible, due to logistic constraints, to
have daily shipments out of the factories. Figure 7b shows an example of bumpy production. The coloured
bars correspond to the quantities released by the factories on their release days, while grey background bars
count the total amount of reagents released on that day, by all factories. The figure shows that, even if factories
have, in principle, a steady production rate (only fluctuating between −5% and +5% due to the noise term 𝜀),
making new reagents available twice per week produces an uneven total daily distribution.

Table 2 summarises all instance generation parameters we used. Because in our scenario analysis we vary
each parameter independently, we ran the Hierarchical Model over the full grid of 60480 possible scenarios.

6.2.2 Scenario analysis

We report the results of our scenario analysis, highlighting how the instance generation parameters affect the
testing capacity and commenting on which real-life decisions a planner can take to increase the number of
swabs tested. A better testing capacity depends on both structural factors (such as a strong reagent industrial
base) which require long-term decisions, and organisational factors (such asmore inter-regional collaboration)
which are influenced by operational decisions. Figure 8 shows how the percentage of swabs tested within the
end of the time horizon changes, when varying each instance generation parameter. Each chart corresponds
to one parameter; we used line charts for the seven numeric parameters, and a box plot for 𝜆PP, which is
categorical. Two linear regression analyses provide additional findings. They use the instance parameters
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Figure 8: Variation in the percentage of swabs tested (𝑦 axis), when varying each instance generation param-
eter (𝑥 axis). In each chart, the line shows the average over all instances generated with the given parameter
value and the shaded area around the line is the 95% confidence interval (obtained with 1000 bootstrap itera-
tions). For parameter 𝜆PP, as it takes categorical values, we show a box plot instead of a line plot. The central
line indicates the median, the box spans the two central quartiles, while whiskers extend to the rest of the
distribution, except for outliers marked with fliers.
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% swabs tested swab wait time
ind. variable coef 𝒑-value coef 𝒑-value

intercept 44.93 < 10−3 0.36 < 10−3
|𝑇 | 0.84 < 10−3 -0.13 < 10−3
𝜆L×R -0.69 < 10−3 0.01 < 10−3
𝜆F×R 4.07 < 10−3 0.07 < 10−3
𝜆LC 5.56 < 10−3 0.09 < 10−3
𝜆LF 3.19 < 10−3 0.04 < 10−3
𝜆LL 0.54 < 10−3 0.02 < 10−3
𝜆FP 0.70 < 10−3 0.01 < 10−3
𝜆PP -13.51 < 10−3 -0.20 < 10−3

Table 3: Results of a linear regression analysis using the instance generation parameters as independent vari-
ables and the primary (number of swabs tested, expressed as a percentage of the total demand) and secondary
(average waiting time of a swab before it’s tested) objectives. Columns coef report the linear regression co-
efficients, after centring and standardising the inputs. All independent variables resulted significant, with
𝑝-values always smaller than 0.001.

(after centring, standardising and transforming 𝜆PP into a numeric parameter, with value 0 if the production
was steady and 1 if bumpy) as independent variables. The percentage of swabs tested and the average time a
swab spent in a lab waiting to be tested are, respectively, the dependent variables in the two analyses. Table 3
reports the results, while in the following we comment on the insights obtained.

Steadiness of reagent supply. Parameter 𝜆PP is the one with the largest impact in our analysis: a steady
availability of reagents allows the laboratories to operate without interruptions, testing more swabs and with
shorter delays. The average percentage of swabs tested when 𝜆PP = steady is double than when 𝜆PP = bumpy.
Recall that a factory in our model can represent a real production site, but also a warehouse or a shipment
from abroad. A physical factory will be able tomaintain a steadier production rate, while relying on shipments
will resemble more the “bumpy” scenario. The analysis, thus, hints to the fact that a solid industrial sector and
a well-function supply chain can have the greatest impact on testing capacity; not necessarily because they
allow to procure more reagent in total, but because they provide a steadier flow of it. A country that cannot
count on such production capacity can mitigate the adverse effects of irregular supply with larger orders (see
the positive impact of parameter 𝜆FP), more inventory capacity and a quick dispatch of reagents to labs.

Capillarity of the reagent industry. Having more small reagent production sites works better than hav-
ing few, larger ones (parameter 𝜆F×R). When 𝜆F×R moves from 0.1 to 1.0, the average percentage of swabs
tested climbs from 40.83% to 51.46%. An efficient supply chain which is able to move material over longer
distances (parameter 𝜆LF) also has a positive impact on testing capacity. When each lab can procure from its
closest factory (𝜆LF = 1), the analysis shows that 41.05% of swabs are tested. This number increases to 46.92%
and then to 48.76%, when 𝜆LF increases to, respectively, 2 and 3.

Lab capacity and inter-regional capacity sharing. Other two factors which impact the amount of swabs
tested are lab capacity and the degree to which regions can share this capacity by transferring swabs between
each other. Parameter 𝜆LC clearly influences testing capabilities: for 𝜆LC < 1 largely less than half of the swabs
are tested within the end of the time horizon. When 𝜆LC ≥ 1, i.e., when the total lab capacity is at least as large
as the average demand, gains are marginal, as exhibited by the curve flattening in Figure 8. It’s at this point
that we would expect capacity sharing via increased inter-regional collaboration to have the greatest effect.
The extent at which capacity is shared depends on parameter 𝜆LL. It might appear, looking at Figure 8, that
the impact of 𝜆LL is small. However, if we divide the analysis of its impact between instances with 𝜆LC < 1
and instances with 𝜆LC ≥ 1, the situation is different, as reported in Figure 9. Note how the curve referring
to instances with 𝜆LC ≥ 1 is much steeper, corresponding to a larger percentage increase in swabs tested.
We can conclude that countries with insufficient lab infrastructures should primarily focus on procuring test
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Figure 9: Variation in the percentage of swabs tested (𝑦 axis), when varying parameter 𝜆LL (𝑥 axis). The chart
on the left refers to instances with 𝜆LC < 1, while that on the right, to instances with 𝜆LC ≥ 1.

machinery and training personnel to carry out rRT-PCR tests. Countries which already have a developed test
lab network, on the other hand, benefit more from inter-regional collaboration and centralised planning than
they do from increasing lab capacity.

Other factors. The percentage of swabs tested decreases when there are fewer, larger regions (parameter
𝜆L×R). This is because, with fewer regions, the impact of one region being critical, i.e., with larger demands𝑚𝑖𝑡 ,
is proportionally larger. The effect of region size is rather modest, as indicated by a small regression coefficient
associated with 𝜆L×R. Regarding the planning horizon length |𝑇 |, its impact is unclear. On one hand, a longer
time horizon allows more opportunities for optimisation. On the other hand, there is a reduction in tested
swabs when moving from |𝑇 | = 5 to |𝑇 | = 7, which is hard to explain. In practice, a planner would want to
balance the advantages usually conferred by longer-term planning with the quality of the demand predictions
that he can obtain from epidemiological models. Finally, note that while the signs of the regression coefficients
in the two regression analyses tend to coincide (meaning that parameters which have a positive impact on
the number of swabs tested also have a positive impact on shortening wait times), the signs disagree for
parameters 𝜆L×R and |𝑇 |, making it difficult to derive actionable recommendations for decision makers based
on these two parameters.

7 Conclusions

We have proposed a model for the problem of assigning reagents and swabs to laboratories in a country
which wants to maximise the number of rRT-PCR tests during a viral epidemic. After describing an Integer
Programming model for a basic version of the problem, we have strengthened and extended the formulation
to take into account real-life aspects of the organisation of healthcare systems. The complete model takes into
account that many countries manage healthcare at a regional level, and allows to optimise two hierarchical
objectives: primarily, maximising the number of tests performed and, secondarily, minimising the average
time a swab waits before it’s tested.

We performed two computational studies: the first based on real-life data from Italy and the second on syn-
thetic instances. Under the assumptions we used, the main one being that reagents availability is often a
bottleneck for testing more swabs (see, e.g., [12, 1, 41]), the analysis has revealed two main findings:

• Increased inter-regional coordination has the potential of increasing the testing capabilities of the coun-
try as a whole, as shown by the analysis of Italian data. In particular, moving swabs from critical regions
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to regions with spare capacity produced an increase of up to 40% in the number of swabs tested in the
Italian scenario. The study performed on synthetic data confirmed this finding, but found amoremodest
effect. The recommendation, in fact, is that countries which don’t have adequate lab infrastructure (i.e.,
which would have insufficient test capacity even if fully stocked with reagents) first focus on expanding
their lab network, e.g., by purchasing new machines and training more lab personnel. Countries with
an advanced laboratory infrastructure, instead, will benefit more from inter-regional collaboration.

• Steady availability of reagents has a large impact on the number of swabs tested and their waiting time.
A solid chemical industrial base, with many (although possibly small) factories producing reagents daily
gives an advantage comparedwith having to rely on a discontinuous supply, e.g., when purchasing from
international markets.

On the short term, increasing inter-regional collaboration requires political will and an efficient supply chain
which can be used to move swabs and reagents. On the other hand, increasing reagents production capacity
involves longer-term investments and balancing the economic interests of pharmaceutical companies with
national interests.

Future research on optimising the delivery of mass-scale test programmes can develop integrating other test
types, such as immunological tests, i.e., tests which detect the presence of antibodies which a person has
developed in response to the viral infection. These tests are too slow for early detection of positive patients;
e.g., T and B cells response to COVID-19 were detected around one week after the onset of symptoms [37],
while swab tests can identify the virus even before symptoms appear. However, because antibodies persist in
the blood even after a patient doesn’t host the virus any longer, health authorities use immunological tests for
mass-screening of populations (including asymptomatic patients) with the aim of assessing the prevalence of
the virus, the level of population immunity and other epidemiological dynamics. It would be interesting to
study not only how to increase capacity for immunological tests, but also to study the problem of selecting the
patients to test with higher priority, in order to create an accurate epidemiological picture of the population
while using a restricted supply of antibody tests such as ELISA (enzyme-linked immunosorbent assay) [39]
or neutralization assays [43].
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A Extended Model formulation

The extended model which incorporates the considerations made in Section 4 uses a new variable 𝑢𝑙𝑡 ∈ N,
which represents the number of new swabs assigned to lab 𝑙 ∈ 𝐿 on day 𝑡 ∈ 𝑇 . The model reads as follows:

min
∑
𝑙 ∈𝐿

𝑧𝑙 |𝑇 | (22)

s.t.
∑
𝑟 ∈𝑅

∑
𝑙 ∈𝐿𝑖

𝑥𝑟𝑙𝑡 ≤ 𝑞
rg
𝑖 ∀𝑖 ∈ {1, . . . , 𝑛}, ∀𝑡 ∈ 𝑇 (23)∑

𝑙1∈𝐿

∑
𝑙2∈𝐿𝑖

𝑦𝑙1𝑙2𝑡 ≤ 𝑞sw𝑖 ∀𝑖 ∈ {1, . . . , 𝑛}, ∀𝑡 ∈ 𝑇 (24)

𝑥𝑟𝑙𝑡 = 0 ∀𝑟 ∈ 𝑅, ∀𝑙 ∈ 𝐿 : 𝛿𝑟𝑙 = 0, ∀𝑡 ∈ 𝑇 (25)
𝑦𝑙1𝑙2𝑡 = 0 ∀𝑙1, 𝑙2 ∈ 𝐿 : 𝜇𝑙1𝑙2 = 0, ∀𝑡 ∈ 𝑇 (26)

𝑧𝑙,𝑡−1 + 𝑢𝑙𝑡 +
∑
𝑙 ′∈𝐿
𝜇𝑙′𝑙=1

𝑦𝑙 ′𝑙𝑡 = 𝑧𝑙𝑡 +𝑤𝑙𝑡 +
∑
𝑙 ′∈𝐿
𝜇𝑙𝑙′=1

𝑦𝑙𝑙 ′𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (27)

∑
𝑙 ∈𝐿𝑖

𝑢𝑙𝑡 =𝑚𝑖𝑡 ∀𝑖 ∈ {1, . . . , 𝑛}, ∀𝑡 ∈ 𝑇 (28)

𝑤𝑙𝑡 ≤ 𝜌𝑙,𝑡−1 +
∑
𝑟 ∈𝑅
𝛿𝑟𝑙=1

𝑥𝑟𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (29)

𝑤𝑙𝑡 ≤ 𝑄𝑙 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (30)

𝜌𝑟,𝑡−1 + 𝑓𝑟𝑡 = 𝜌𝑟𝑡 +
∑
𝑙 ∈𝐿
𝛿𝑟𝑙=1

𝑥𝑟𝑙𝑡 ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (31)

𝜌𝑙,𝑡−1 +
∑
𝑟 ∈𝑅
𝛿𝑟𝑙=1

𝑥𝑟𝑙𝑡 = 𝜌𝑙𝑡 +𝑤𝑙𝑡 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (32)

𝛾𝑙𝑡 = 0 → 𝑤𝑙𝑡 ≤ 𝑄𝑙 − 1 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (33)
𝛾𝑙𝑡 = 0 → 𝜌𝑙𝑡 ≥ 1 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (34)
𝛾𝑙𝑡 = 1 →

(
𝑤𝑙𝑡 = 𝑄𝑙

)
∨
(
𝜌𝑙𝑡 = 0

)
∀𝑙 ∈ 𝐿 ∀𝑡 ∈ 𝑇 (35)

𝛾𝑙𝑡 = 0 →
∑
𝑙 ′∈𝐿
𝜇𝑙𝑙′=1

𝑦𝑙𝑙 ′𝑡 = 0 ∀𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (36)

𝛾+𝑙𝑡 = 1 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙𝑙 ′𝑡 ≥ 1, 𝛾+𝑙𝑡 = 0 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙𝑙 ′𝑡 = 0 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (37)

𝛾−𝑙𝑡 = 1 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙 ′𝑙𝑡 ≥ 1, 𝛾−𝑙𝑡 = 0 →
∑
𝑙 ′∈𝐿
𝑙 ′≠𝑙

𝑦𝑙 ′𝑙𝑡 = 0 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (38)

𝛾+𝑙𝑡 + 𝛾
−
𝑙𝑡 ≤ 1 ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (39)

𝑥𝑟𝑙𝑡 ∈ N ∀𝑟 ∈ 𝑅, ∀𝑙 ∈ 𝐿 : 𝛿𝑟𝑙 = 1, ∀𝑡 ∈ 𝑇 (40)
𝑦𝑙1𝑙2𝑡 ∈ N ∀𝑙1 ∈ 𝐿, ∀𝑙2 ∈ 𝐿 : 𝜇𝑙1𝑙2 = 1, ∀𝑡 ∈ 𝑇 (41)
𝜌𝑟𝑡 ∈ N ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (42)
𝜌𝑙𝑡 , 𝑧𝑙𝑡 ,𝑤𝑙𝑡 , 𝑢𝑙𝑡 ∈ N ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (43)
𝛾𝑙𝑡 , 𝛾

+
𝑙𝑡 , 𝛾

−
𝑙𝑡 ∈ {0, 1} ∀𝑙 ∈ 𝐿, ∀𝑡 ∈ 𝑇 (44)
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