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Abstract

This paper studies the Hazardous Orienteering Problem (HOP), a variant of the more famous
Orienteering Problem (OP). In the OP, a vehicle earns a profit for each customer it visits (e.g., to
pick up a parcel) subject to an upper bound on the tour time. In the HOP, the parcels picked up at
some customers have a probability of triggering a catastrophic event. The probability depends on
how long the parcels travel on the vehicle. If any catastrophic event triggers, the entire collected
profit is lost. The goal is to determine the tour that maximises the expected profit. The problem
has interesting applications in routing of hazardous material, cash-in-transit and law enforcement.
We propose a mixed-integer non-linear formulation and techniques both to obtain dual bounds and
to produce primal solutions. Computational tests investigate the efficacy of the methods proposed
and allow to gain insights into solution features.

Keywords: Orienteering Problem, Primal and Dual Bounds, Hazardous Material Transporta-
tion, Cash-in-Transit Logistics

1 Introduction
Travelling Salesman Problems (TSP) with profits are well-studied combinatorial optimisation problems.
The TSP asks to find the cheapest Hamiltonian cycle on a graph with costs on the edges (or arcs).
Interesting variants occur when not all vertices need to be visited and profits are associated with each
of them. In this case, there are three main problems which collectively fall under the umbrella of TSP
with profits:

• The Orienteering Problem (OP) [19, 24], which asks to collect the highest possible profit, while
respecting an upper bound on travel costs (or time).

• The Prize-collecting TSP [5], which asks to minimise the tour cost (or time), while respecting a
lower bound on the amount of profit collected.

• The Profitable Tour Problem [11], which asks to maximise the difference between collected profits
and tour cost.

In this paper we consider a novel stochastic generalisation of the OP, which arises in the context of
routing of hazardous material, law enforcement with drones, and transportation of high-value objects.
Consider the following scenarios.

Routing of hazardous material. A logistic company collecting parcels at client sites must decide
which pickups to accept and how to route a vehicle to satisfy the corresponding requests. Each accepted
pickup earns a profit, so the company would like to accept as many as possible. However, the number
of accepted pickups is limited by the total time the vehicle can spend en route, e.g., to comply with
driver regulations or because collected parcels must be available at a warehouse by a given deadline.
This setting can be modelled as an Orienteering Problem. In our case, however, some requests involve
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Figure 1: Example of a cash-in-transit scenario with seven customers. The customers drawn in colour
increase the risk that the truck is attacked after visiting them. The black arrows indicate the truck’s
route in a feasible solution.

hazardous material. Such material has a small (but non-zero) probability to catch fire and cause the
loss of all transported parcels. The probability of this event is different for each hazardous shipment
and is directly proportional to the time the shipment spends in the vehicle, following an exponential
distribution. For example, lithium-ion batteries have a small probability to catch fire under mechanical
stress suffered on a road vehicle [15, 23].

Law enforcement with drones. A law enforcement agency must decide which targets to visit with
an unmanned aerial vehicle, subject to a maximum travel distance dictated by the range of the aircraft.
Each target has an associated profit, which reflects how important it is to perform a reconnaissance
action at the corresponding location. This scenario can also be modelled as an Orienteering Problem.
However, visiting some of the targets allows criminals to detect the aircraft and try to interfere with its
operation. The more targets are visited and the longer the aircraft keeps flying afterwards, the higher
is the chance of being intercepted or shot down—a catastrophic event which we can model with the loss
of the entire collected profit.

Cash-in-transit. A security transport company receives requests for cash pickup from several shops,
to deposit their daily income to a bank. The company charges each customer that it can include in
its tour. The scenario can be modelled as an Orienteering Problem, given a bound on the travel time
due to, e.g., the security guards’ work shift duration. The more customers are visited and the higher
the amount of cash collected, the more the vehicle becomes an interesting target for assailants: each
additional minute spent on the road gives potential robbers a chance to attack the vehicle and cause
the total loss of its content. Figure 1 depicts an example scenario. The black node represents the
bank. Customers which do not cause the vehicle to be endangered after visiting them (i.e., they are
not attractive for potential robbers) are drawn in grey. On the other hand, the red, blue, and orange
customers increase the chance that the vehicle is attacked after visiting them. The longer the vehicle is
on the road after visiting these customers, the higher the chances of attack. In the solution depicted in
Figure 1, the vehicle visits two such customers: the red one and the blue one. Black arrows indicate the
truck’s route, while we draw coloured arrows to represent the portions of the truck’s route which occur
after visiting each dangerous customer.

To model the above scenarios, we introduce the stochastic Hazardous Orienteering Problem (HOP).
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The difference with the classical OP is that visiting some “hazardous” (or “time-bomb”) customers
causes that, after the visit, the vehicle is at risk of losing its entire collected profit. This probability
increases with the number of hazardous customers visited and with the time that the vehicle travels
after visiting each hazardous customer. Although, as seen above, the HOP models different real-life
applications, in the rest of the paper we will use logistic-based terminology and we will say that the
vehicle visits “customers” to collect “parcels”, which can “explode” en route (an event which we denote
as a “catastrophic event”). We propose a problem formulation which involves the maximisation of a
non-concave objective function, together with a set of valid inequalities. Then, we develop different
upper bounds based on either a relaxation of the objective function (leading to functions which are
easier to handle than the original one) or to a relaxation of a subset of the constraints. We design both
exact solution algorithms and a heuristic approach. Extensive computational results show that it is
hard to devise tight dual bounds but possible to obtain good primal solutions. In particular, using (i) a
black-box non-linear optimisation solver after a log-transformation of the objective function and (ii) a
neighbourhood-based heuristic, we were able to generate high-quality solutions in short runtimes.

The main contributions of the paper can be summarised as follows:

1. We introduce the HOP and provide a formal definition of the problem.

2. We present a mathematical formulation of the problem which maximises a non-concave (but log-
concave) objective function.

3. We propose multiple techniques to find effective upper and lower bounds, focusing on the diversity
of the techniques we propose. In this introductory paper we do not further fine-tune the most
powerful approaches, but instead we present promising ideas and compare both exact and heuristic
methods.

4. We perform a computational study to investigate the efficacy of the bounds proposed and to gain
insights into solution features.

The paper is organised as follows. Section 2 reviews the literature on closely related problems. Section 3
provides the formal description of the HOP and its mathematical formulation, while dual bounds are
described in Section 4. Section 5 introduces algorithms to obtain primal solutions. Finally, Section 6
presents computational results and an analysis of solution characteristics, while we report our conclusions
in Section 7.

2 Literature Review
In this section we revise the literature related to the HOP. Although the problem is new, it has aspects in
common with other problems arising in contiguous areas: stochastic orienteering problems and stochastic
problems with catastrophic consequences. It also shares characteristics or application areas with other
problems, such as routing of hazardous materials and cash-in-transit.

Stochastic Orienteering Problems. Similar to other routing problems, real-life applications of the
OP are often affected by uncertainty. As a consequence, researchers have developed stochastic variants
of the OP that incorporate such uncertainty. The main stochastic OP variants are the following:

• The OP with Stochastic Profits, in which uncertainty affects the profit collected at each customer.
This problem was introduced by lhan, Iravani and Daskin [22] who associated a normal random
distribution with each customer and aimed at maximising the probability that the total collected
profit is not smaller than a given threshold. Different from the HOP, the visit order does not
affect the stochastic profits of the customers.

• The Probabilistic OP [2, 3], in which each customer has an associated Bernoulli random variable
that models whether the customer will be available. The decision-maker first builds an a priori
OP tour visiting a subset of customers and respecting the time bound. In the second stage,
when customer availability is revealed, the decision-maker removes unavailable customers from
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the tour and visits the remaining customers. The objective is to maximise the expected profit,
considering that only available customers yield their corresponding profit. Different from the HOP,
if a customer is not available, it is only its profit which is lost, rather than the entire collected
profit.

• Uncertainty can also affect time, as in the case of the OP with Stochastic Travel and Service
Times [7, 14, 30], in which travel and service times are uncertain, and the OP with Stochastic
Time Windows [40], in which customers are available during stochastic time windows.

Stochastic problems with catastrophic consequences. In the HOP, if a catastrophic event hap-
pens then the whole collected profit is lost. Therefore, we can place the HOP in the category of stochastic
problems in which some low-probability event has a large negative impact. Sherali et al. [36] were among
the first to consider this type of problems in the context of routing of hazardous materials. In their
work, different from the HOP, the authors are more concerned with assessing the external impact of the
catastrophic event: for example, it is worse to spill toxic liquids in a city centre than in an unpopulated
area. Thus, rather than minimising the expected probability that a catastrophic event happens, they
minimise the expected impact conditional on the event happening. Other examples of problems with
catastrophic consequences are the Distributionally Robust Stochastic Knapsack Problem [8] and the 0–1
Time-Bomb Knapsack Problem [26]. Both are stochastic variants of the classical 0–1 Knapsack Problem.
In the first problem, items arrive one by one and their weight is given by a random variable. At any
point, the user packing the knapsack can either ask for a new object or stop and collect the profit cur-
rently accumulated. If the user asks for a new object and its weight is larger than the residual capacity,
the knapsack breaks and all the profit accumulated is lost. In the second problem, a subset of items
to pack are time-bombs which can explode with a Bernoulli-distributed probability. If any such item
is packed and explodes, then the entire profit packed in the knapsack is lost. Similar to the HOP, the
objective is to maximise the expected profit.

Problems with similar characteristics or applications. Finally, we describe existing problems
which share some of the peculiarities of the HOP and which are used to model real-life applications
in similar areas. One characteristic of the HOP is that the (expected) profit collected at a hazardous
customer depends indirectly on the visit time. More precisely, the expected profit depends on the travel
time after visiting the customer and therefore a hazardous customer yields a higher expected profit if the
vehicle visits it towards the end of the tour (later time) compared to the beginning of the tour (earlier
time). The Team OP with Decreasing Profits (TOPDP), introduced by Afsar and Labadie [1], also
has time-dependent profits. The differences are that in the TOPDP (i) the time dependence is explicit
(the profit is a linear function of the visit time), (ii) the dependence is inverse compared to the HOP
(later visits yield lower profit), (iii) there is no probability of losing the entire profit in case a negative
event happens, (iv) the authors consider a multi-vehicle version of the problem. Typical applications
of the TOPDP are in maintenance routing, in which a customer might be willing to pay more to be
visited earlier, and in humanitarian logistics or firefighting, in which visiting a target earlier increases
the probability of saving lives or property. Other problems which share applications with the HOP
are cash-in-transit problems [9]. They involve routing one or more vehicles containing cash, which are
typically used to either replenish ATM machines or collect cash at stores at the end of the day. These
problems have been modelled as extensions of the OP (see, e.g., [28]), although the main focus has been
put on coverage and service level considerations [29] rather than on the probability that the vehicle is
attacked. An exception is the case of multiperiod cash-in-transit problems, in which this risk is often
explicitly considered and mitigated by generating different routes for each period [18, 20, 27]. A similar
problem is the Risk-Constrained Cash-in-Transit Vehicle Routing Problem (RCTVRP) introduced in
Talarico, Sörensen and Springael [37] where the goal is to design routes for a fleet of vehicles carrying
cash considering that the probability that a vehicle is robbed is a function of both the amount of cash
it carries and the distance it travels. More precisely, the authors define the risk of being attacked over
an edge of length tij while carrying an amount Di of cash as Di · tij . The objective function of the
RCTVRP minimises the total travel cost, under a constraint that the maximum risk over any used arc
is not larger than a given threshold. Under these assumptions, the authors formulate the RCTVRP
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as a Mixed-Integer Program, which they show to work in reasonable computing times only on small
instances. The authors then develop a metaheuristic algorithm to deal with medium- and large-size
instances.

3 Problem definition and mathematical formulation
Let G = (V ′, A) be a complete directed graph with vertex 0 ∈ V ′ representing the depot, where the
route starts and ends, while set V = {1, . . . , n} ⊂ V ′ represents the customer locations; set A is the
arc set. Each vertex i ∈ V has an associated profit pi ∈ R+ and each arc (i, j) ∈ A has a travel time
tij ∈ R+. We assume that travel times satisfy the triangle inequality.

We model the probability of catastrophic events through the exponential distribution. This distri-
bution is commonly used in survival analysis and reliability theory, to model the occurrence of low-
probability/high-impact events [13, 31]. Its popularity derives both from its theoretical properties (e.g.,
it is memoryless and it assumes constant risk over time) and because it fits well empirical quantitative
risk assessment curves [39]. We consider a subset H ⊆ V of hazardous vertices, and associate with each
vertex i ∈ H a parameter λi ∈ R+. A vertex i ∈ H has an associated exponential random variable with
rate λi modelling the possibility that the parcel collected at i explodes and causes the loss of the entire
vehicle content. The cumulative distribution function of the exponential random variable associated
with i is

Fi(t) = 1− e−λit (t ≥ 0), (1)

and it represents the probability that the catastrophic event will happen within a time t ≥ 0 counted
from the moment the vehicle visits vertex i. Finally, we denote with T ∈ R+ the upper bound on the
tour travel time. The goal is to determine an elementary tour that maximises the expected collected
profit and does not exceed the bound T on the duration.

3.1 A non-linear mixed-integer formulation

Consider the following decision variables:

• xij ∈ {0, 1} for (i, j) ∈ A, taking value 1 iff the vehicle traverses arc (i, j).

• yi ∈ {0, 1} for i ∈ V ′, taking value 1 iff the vehicle visits vertex i.

• wi ∈ R+ for i ∈ V , representing the travel time along the path that leads from i back to the
depot, if i is visited, or 0 otherwise.

Consider the example presented in Figure 1. Figure 2 refers to the same example: in the top-most
part of the figure we depict the vehicle’s tour and the travel times of the arcs used. We report the
corresponding value of the w variables in the middle part of the figure. Each variable wi measures
the amount of time that the vehicle spends travelling, after it leaves customer i. In the bottom-most
part of the figure, we report the probability that no catastrophic event occurs, as a function of time.
Because the first hazardous customer is Cust2, the probability starts decreasing at time 3, following the
exponential curve e−λ2w2 . When the vehicle visits the next hazardous customer, Cust4, the decrease
is even steeper because it follows function e−λ2w2 · e−λ4w4 .

A non-linear mixed-integer formulation for the HOP is:

max
(∑

i∈V
piyi

)
·
(∏

i∈H
e−λiwi

)
(2)

s.t. y0 = 1 (3)∑
(i,j)∈δ+(i)

xij = yi ∀i ∈ V ′ (4)

∑
(j,i)∈δ−(i)

xji = yi ∀i ∈ V ′ (5)
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Figure 2: Value of the w variables and probability that no catastrophic event occurs, in the example
depicted in Figure 1. The probability that no catastrophic event occurs corresponds to

∏
i∈H e−λiwi .

∑
(i,j)∈A

tijxij ≤ T (6)

wi ≤Myi ∀i ∈ V (7)
wi ≥ wj + tij −M(1− xij) ∀(i, j) ∈ A : i, j 6= 0 (8)
wi ≥ ti0xi0 ∀i ∈ V (9)
xij ∈ {0, 1} ∀(i, j) ∈ A (10)
yi ∈ {0, 1} ∀i ∈ V ′ (11)
wi ∈

[
0, T − t0i

]
∀i ∈ V , (12)

where δ+(i) denotes the set of arcs with origin i, δ−(i) denotes the set of arcs with destination i, and
M is a sufficiently large number (for example, M = T − t0i in (7) and M = T − tj0 + tij in (8)).
Objective function (2) maximises the expected profit under the assumption that the entire profit is lost
if a parcel explodes. Constraint (3) ensures that the depot is visited, while (4) and (5) are the classical
flow balance constraints. Constraint (6) enforces that the total travel time of the tour does not exceed
the bound T . Constraint (7) forces wi to be zero for vertices not visited in the tour. Constraints (8) set
a bound on the value of wi in case i is visited immediately after j. Note that these constraints exclude
the case in which j is the depot and, thus, i is the last visited vertex. This latter case is considered in
constraint (9). Also note that, if xij = 1, constraint (8) forces wi ≥ wj + tij , but because higher values
of wi are penalised in the objective function, the above inequality will be enforced with strict equality
in any optimal solution. Analogously, (9) is enforced with equality when xi0 = 1. Inequalities (8)–(9)
are adapted from the Miller-Tucker-Zemlin (MTZ) inequalities for the TSP [25] and prevent subtours.
Constraints (10)–(12) define variables domain. Note that the upper bound on variable wi in constraint
(12) is valid because the latest time a customer can be visited corresponds to the time bound T minus
the shortest time to reach the depot from the customer location, i.e., t0i.
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3.2 Lifting of inequalities

We lift constraints (7) and (8) as proposed by Desrochers and Laporte [12]. In the following, we provide
the formulation of the lifted inequalities and we refer the reader to [12] for the proof that the new
inequalities are valid. Inequality (7) can be lifted as follows:

wi ≤ (T − t0i)yi +
∑

(i,j)∈A

(T − t0j − tji + t0i)xji ∀i ∈ V. (13)

Inequality (8) can be strengthened as follows:

wi ≥ wj + tij −Mij(1− xij) + (Mij − tij − tji)xji ∀(i, j) ∈ A : i, j 6= 0. (14)

where Mij = max{ti0 − tij , T − t0j + tij , T − t0i − tj0 + tij}. Note that Desrochers and Laporte [12]
propose additional lifted inequalities, but they cannot be applied to the HOP because they assume that
the vehicle visits all customers.

3.3 Valid inequalities

We propose four valid inequalities. The first three are specific to the HOP, while the last comprises the
classical subtour elimination constraints.

The first inequality is the following:

wi ≥
∑

(i,j)∈δ+(i)

tijxij ∀i ∈ V , (15)

which ensures that the travel time after visiting i is at least as large as the travel time of the arc used
to leave i, if i is visited. This inequality is particularly useful when solving the continuous relaxation of
the HOP (see Section 4.4) because “big-M” constraints (8) and (9) allow fractional solutions in which
variables wi associated with visited customers take value 0.

The second inequality reads as follows:

wi ≤
∑

(j,k)∈A

tjkxjk − t0i ∀i ∈ V . (16)

It assumes that the triangle inequality holds and ensures that the travel time after visiting i cannot
exceed the total tour travel time, minus the minimum time required to get from the depot to i (this
minimum is t0i and is achieved when i is the first visited vertex). This latter inequality can be extended
considering the case when i is at least the second vertex visited after leaving the depot. Let t′0i =
minj ̸=i{t0j + tji} be the shortest path from 0 to i when visiting at least one more vertex in between.
Then the following inequality is valid:

wi ≤
∑

(j,k)∈A

tjkxjk − t′0i +Mx0i ∀i ∈ V , (17)

where M is a sufficiently large number (e.g., M = t′0i − t0i). Note that constraint (17) becomes moot
when i is the first vertex visited after leaving the depot. We also remark that the last two valid
inequalities, which bound wi from above, can be omitted for customers i ∈ H. For these customers, in
fact, the objective function already penalises the corresponding wi.

We finally include the generalised subtour elimination constraints (GSECs)∑
i∈S

∑
j ̸∈S

xij ≥ yk ∀S ⊆ V, ∀k ∈ S (18)

as valid inequalities. Although subtours are already prevented by inequalities (8) and (9), these MTZ-
like constraints give notoriously poor continuous relaxation bounds (see, e.g., [6]). GSECs, on the other
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hand, give better bounds but are impractical to enumerate because their number grows exponentially
in the instance size. Therefore, we initially do not include cuts (18) in the model and we dynamically
separate them, as explained below.

To detect the GSECs violated by a fractional solution
(
x∗ij , y

∗
i

)
, we solve several max-flow/min-cut

problems extending the separation procedure of Fischetti, Gonzalez and Toth [16]. We build an auxiliary
graph G∗ = (V ∗, A∗), with V ∗ =

{
i ∈ V ′ : y∗i > 0

}
and A∗ =

{
(i, j) | i, j ∈ V ∗, i 6= j

}
. We associate

with each arc (i, j) ∈ A∗ a capacity equal to x∗ij . The separation procedure considers vertices i ∈ V ∗\{0}
in decreasing order of value of y∗i . For each vertex, it finds a minimum-capacity (0, i)-cut. Let Si, V

∗\Si

be such cut, where i ∈ Si and 0 6∈ Si. If the corresponding maximum flow between 0 and i is smaller
than y∗i , then the solution violates a GSEC and we add to the model the constraint associated with Si.
Similar to what Fischetti, Gonzalez and Toth [16] proposed for the OP, a simple way to avoid generating
the same set Si twice is to increase the capacity of arc (0, i) by 1−

∑
j ̸∈Si

∑
k∈Si

xjk before moving to
the next vertex.

4 Upper bounds for the HOP
In this section, we propose upper bounds for the HOP based on either the relaxation of the objective
function or of a subset of the constraints. We also present an upper bound obtained from dynamic
programming.

4.1 Local hazard bound

The first bound stems from the following observation. If, instead of destroying the entire vehicle content,
the explosion of a parcel only caused the loss of the parcel itself, the corresponding expected profit would
overestimate the expected profit of the HOP. Therefore, the first upper bound is based on assuming
that, when a catastrophic event caused by a visit to i ∈ V occurs, the planner only loses the profit
associated with i. This corresponds to changing objective function (2) as follows:∑

i∈V
piyie

−λiwi , (19)

with the convention that λi = 0 if i 6∈ H. This bound, per se, does not dramatically simplify the
objective function; for example, (19) is still non-linear. However, we will use (19) in the rest of this
section to devise linear upper bounds.

4.2 Linear approximation

The product of exponential functions in objective (2) can be bounded from above by a product of linear
functions. Let gi(wi) = e−λiwi . When considering gi as a function [0, T − t0i] → R, it is easy to show
that gi is bounded from above by the linear function

hi(wi) =
πi − 1

Ti
wi + 1, (20)

where Ti = T − t0i and πi = e−λiTi . Figure 3a depicts the relation between gi and hi. Each function hi
overestimates the corresponding gi and, thus, objective function(∑

i∈V
piyi

)
·
(∏

i∈H

(πi − 1

Ti
wi + 1

))
(21)

is an upper bound for (2).

Combining (20) with (19) we obtain a quadratic relaxation of the original problem with objective
function ∑

i∈V
piyi

(πi − 1

Ti
wi + 1

)
. (22)
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Figure 3: Linear and piecewise-linear approximations overestimating of the original objective function.

Because yiwi = wi and πi = 1 for i 6∈ H, we can write (22) as a linear objective function:∑
i∈H

pi
πi − 1

Ti
wi +

∑
i∈V

piyi. (23)

Using (23) we can solve a mixed-integer linear programme to obtain an upper bound on the original
non-linear problem.

4.3 Piecewise linear approximation

We can tighten the linear approximation presented in Section 4.2 if we note that the domain of variables
wi is not the entire interval [0, Ti], but rather the disconnected set Di = {0} ∪ [ti0, Ti]. Thus, functions
gi restricted to domain Di are bounded from above by functions li defined as

li(wi) =

{
1 if wi = 0
µi−πi

ti0−Ti
wi + πi − Ti(µi−πi)

ti0−Ti
:= αiwi + βi if wi ∈ [ti0, Ti]

, (24)

where µi = e−λiti0 . Figure 3b depicts the relation between gi
∣∣
Di

and li.

Each function li overestimates the corresponding function gi
∣∣
Di

and thus, by the fact that wi = 0 ⇐⇒
yi = 0, function (∑

i∈V
piyi

)
·
(∏

i∈H

(
yi(αiwi + βi − 1) + 1

))
(25)

is an upper bound for (2). Combining (25) with (19) we obtain a polynomial relaxation of the original
problem with objective function ∑

i∈V
piβiyi

(
yi(αiwi + βi − 1) + 1

)
(26)

and, using the fact that y2i = yi, yiwi = wi, and αi = 0 for i 6∈ H, we obtain the linear objective
function ∑

i∈V
piβiyi +

∑
i∈H

piαiwi. (27)

Using (27), we can solve a mixed-integer linear program to obtain an upper bound on the original
problem and, because li(wi) ≤ hi(wi) (for all i ∈ H), such bound is tighter than the one derived using
objective function (23).
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4.4 Continuous relaxation

Denote with X =
(
x⃗, y⃗, w⃗

)
the vector of all variables, and with b(X) objective function (2). The

continuous relaxation of model (2)–(12) asks to maximise b subject to constraints (3)–(9), but with the
variable domain definitions replaced by:

0 ≤ xij ≤ 1 ∀(i, j) ∈ A (28)
0 ≤ yi ≤ 1 ∀i ∈ V ′ (29)
0 ≤ wi ≤ Ti ∀i ∈ V , (30)

where Ti is as defined in Section 4.2.

Unfortunately, b is neither convex nor concave (as it follows immediately from B(u, v) = u · ev being
neither convex nor concave). However, b is log-concave and by maximising the logarithm of (2) one gets
the same maximiser as for the original problem. We then propose to solve the continuous optimisation
problem of minimising f(X) := − ln b(X) subject to (3)–(9). After preliminary experiments (see Sec-
tion 6.2), in the final version of the algorithm we use the lifted (13) and (14) instead of, respectively,
(7) and (8), and we add additional valid inequalities (15) and (18). An explicit formula for f is

f(X) = − ln

(∑
i∈V

piyi

)
+
∑
i∈H

λiwi.

Because both the feasible region of this problem (which we denote as P ) and objective function f are
convex, we can use the Frank-Wolfe algorithm [17] to find a minimum of f . In the following, we detail
the procedure used to minimise f .

The Frank-Wolfe algorithm starts with a feasible solution X̄ and gets an improving solution X̄ ′ solving
the auxiliary problem

X̄ ′ = argmin
{
∇f(X̄)⊤X | X ∈ P

}
. (31)

Solution X̄ is a local (and, by convexity of f , global) optimum if ∇f(X̄)⊤(X̄ ′ − X̄) ≤ 0. Otherwise,
the next solution is obtained by minimising f over the segment joining X̄ and X̄ ′:

X̄ ← argmin
{
f(X) | X ∈

[
X̄, X̄ ′]}. (32)

We can solve (32) with a line search, minimising the one-dimensional function which maps γ 7→ f
(
γX̄+

(1− γ)X̄ ′). Such problem has closed-form solution

γ∗ =

∑
i∈V pi(ȳi−ȳ′

i)∑
i∈H λi(w̄i−w̄′

i)
−
∑

i∈V piȳ
′
i∑

i∈V pi(ȳi − ȳ′i)
, (33)

where ȳj and w̄j are, respectively, the values of variables yj and wj in solution X̄ (and analogously for
ȳ′j and w̄′

j in solution X̄ ′).

As for the auxiliary problem (31), it is a linear problem (LP) with feasible region P and objective
function

min
∑
i∈V

∂f

∂yi
(X̄) · yi +

∑
i∈H

∂f

∂wi
(X̄) · wi =

min
∑
i∈V

−pi∑
j∈V pj ȳj

yi +
∑
i∈H

λiwi. (34)

4.5 Non-elementary tour

We obtain an additional upper bound by dropping the elementarity requirement and allowing the same
customer to be visited multiple times. To obtain the optimal solution to this relaxed problem, we use
the state-space-relaxed Dynamic Programming algorithm described in Section 5.1.
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5 Dynamic Programming
In this section we present an exact method for the HOP, based on dynamic programming. In practice,
the runtime of this algorithm is too high to use it as an exact solution method. However, one can use
it as a heuristic stopping its execution and using the best solution found.

In the labelling algorithm we propose, we associate a label with each partial path from a vertex to
the depot. Extending such partial paths “backwards” until the first visited vertex is the depot itself
(while ensuring that no constraint is violated) produces a valid HOP tour. The number of such tours
to consider is limited by pruning unpromising labels via dominance rules as explained below.

Label definition. We denote a label as a tuple L = (v,W, p, η, π, t), where: v ∈ V is the current
starting vertex of the partial path; W ∈ {0, 1}|V ′| is a binary vector whose i-th component is 1 iff the
partial path visits vertex i ∈ V ′; p ∈ R+

0 denotes the total profit accumulated at the customers visited
by the partial path; η ∈ (0, 1] is the probability that no loaded parcel explodes while travelling along
the partial path; π = p ·η is the expected profit accumulated along the partial path; t ∈ R+

0 denotes the
travel time of the partial path. The set of labels is initialised with the single label L0 = (0, 0⃗, 0, 1, 0, 0).

Label extension. A label L = (v,W, p, η, π, t) is extended to a vertex i ∈ V ′ if Wi = 0, i.e., the path
has not visited customer i, and t0i + tiv + t ≤ T , i.e., visiting i would not violate the travel time bound.
If the extension is feasible, label L is extended to label L′ = (v′,W ′, p′, η′, π′, t′), where:

v′ = i, W ′
j =

{
Wj if j 6= i

1 if j = i
, p′ = p+ pi, η′ = ηe−λi(tiv+t), π′ = p′η′, t′ = tiv + t.

Label dominance. We say that label L1 dominates label L2 if any feasible completion of the partial
path associated with L1 is feasible for L2 and this latter has a worse objective value. In this case, we
shall not extend L2, as the optimal solution cannot contain the path associated with L2 as a sub-path.
In our problem, L1 dominates L2 if: (i) v1 = v2, i.e., both labels refer to a partial path starting at a
same vertex; (ii) W1 ≤ W2 component-wise, i.e., the partial path associated with L1 visits a subset of
the vertices visited by the partial path associated with L2; (iii) p1 ≥ p2, i.e., the profit collected by
L1 is not lower than the profit collected by L2; (iv) η1 ≥ η2, i.e., L1 has a probability of not exploding
which is not lower than that of L2; (v) t1 ≤ t2, i.e., the travel time of L1 does not exceed that of L2;
(vi) at least one of the inequalities at points (ii)–(v) is strict. Note that W1 ≤ W2 and p1 ≥ p2 imply
that W1 = W2 and p1 = p2. Therefore, η1 ≥ η2 also implies π1 ≥ π2.

Optimal path. We recover the optimal path choosing the label with the highest objective value π,
among all undominated labels which are extended up to the depot 0. Keeping, for each label L, a
pointer to the label from which L was extended, allows us to recover the entire path.

Heuristic. We note that any partial path can be converted into a complete solution by connecting the
depot to the head of the path. As such, if we take care to always perform such a connection as the first
one tried when extending a label, we can build a pool of primal feasible solutions very early during the
run of the algorithm. Therefore, we are able to return a feasible solution at any moment (for example,
when we reach a maximum runtime), by choosing the best label which was extended up to the depot.

5.1 State-space relaxation

We have explained how to use the proposed labelling algorithm to produce primal solutions either as an
exact algorithm or as a heuristic. We conclude this section showing that the same algorithm can also
be used to compute upper (dual) bounds, using the relaxation technique described below.

State-space relaxation (SSR) is a technique introduced by Christofides, Mingozzi and Toth [10] to reduce
the number of labels generated by a labelling algorithm. SSR projects the space of all possible labels
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Figure 4: Sample instance showing that it is necessary to use both p and η in the dominance criterion
of state-space relaxed labels, because comparing π can lead to wrongly excluding valid labels.

(say, S) into a lower-dimensional space (say, S ′), and runs the algorithm in this reduced space. However,
during the reduction, the original labels corresponding to both feasible and infeasible partial paths are
projected to S ′. Therefore, the optimal label in the reduced space might correspond to an infeasible
tour. In this case, the algorithm would provide an upper bound on the value of the optimal solution.

In our case, the projection maps vector W to the sum of its elements Σ =
∑

j∈V ′ Wj . In this way, labels
cannot keep track of which customers have been visited and their partial paths can include multiple
visits to the same customer.

In the label extension checks, condition Wi = 0 is replaced by two checks: j 6= v, i.e., we are not
“staying” at the same customer, and Σ < n+ 1, i.e., we are not visiting more vertices than there are in
the graph. The new component is updated as Σ′ = Σ + 1 and dominance condition (ii) is replaced by
Σ1 ≤ Σ2.

Remark. It might be tempting, when using SSR, to replace dominance conditions (iii) p1 ≥ p2 and (iv)
η1 ≥ η2 with the single condition p1η1 = π1 ≥ π2 = p2η2. This choice would allow to dominate more
labels, because π1 can be larger than π2 without both p1 and η1 being, respectively, larger than p2 and η2.
However, this check would lead to an incorrect dominance rule. In fact, it is possible that π1 > π2 but,
when extending both L1 and L2 to the same vertex j, π′

1 = π′
2. In case π1 > π2 was the only inequality

satisfied strictly, we would have that L1 dominates L2 but extension L′
1 does not dominate L′

2.

This situation, although rare, can happen; Figure 4 shows an example with a graph and the partial path
associated with two labels (in blue and red, respectively). Consider label L1 = (v1 = 3,Σ1 = 2, p1 =
20, η1 = 0.05, π1 = 1, t1 = 31) and L2 = (v2 = 3,Σ2 = 2, p2 = 1, η2 = 0.1, π2 = 0.1, t2 = 31). If we do
not consider p and η in the dominance, but only consider π, L1 would dominate L2 and the only strict
inequality would be π1 > π2 (Σ and t being equal). If we now extend both labels to a new non-hazardous
vertex 4 with p4 = 18, λ4 = 0 and t43 = 1, we would obtain: L′

1 = (v′1 = 4,Σ′
1 = 3, p′1 = 38, η′1 =

0.05, π′
1 = 1.9, t′1 = 32) and L′

2 = (v′2 = 4,Σ′
2 = 3, p′2 = 19, η′2 = 0.1, π′

2 = 1.9, t′2 = 32). Because
all tested components are equal, L′

1 does not dominate L′
2, invalidating the validity of the “simplified”

dominance criterion.

We strengthen the SSR version of the algorithm by explicitly forbidding 2-cycles (see, e.g., [21]). To
this end, we add to our label a component u ∈ V ′ indicating the vertex which, in the partial path, is
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visited immediately after the current vertex v. We forbid extending a label L to a vertex j if u = j.
When L is extended to a new label L′, we set u′ = v. Finally, when checking dominance between labels
L1 and L2, we add the additional condition that u1 = u2. This version of the algorithm allows fewer
labels to dominate each other, but produces a considerably tighter upper bound on the objective value
of the optimal solution.

6 Computational results
In this section we present the results of our computational tests using a machine equipped with 4GB
RAM and an Intel Xeon CPU running at 2.4GHz. All algorithms were coded using the Python pro-
gramming language, version 3.8. We used Gurobi 9.0.0 as the black-box MIP solver for the linear and
piecewise-linear bounds and as the LP solver for auxiliary problem (31). We used Baron 22.1 as the
black-box solver for the non-linear model.

The instance generator, instance files, solvers, results files and all the scripts used to generate tables
and figures in this paper are available on-line [35].

6.1 Instances

We generate HOP instances starting from the popular Tsiligirides OP instances [38], a set of 49 instances
divided into three groups. Instances of each of the three groups contain, respectively, 20, 31 and 32
vertices. To transform OP instances into HOP instances, we use the following generation method. For
each base instance, we first choose the number of customers that will be hazardous as n · αTsi, where n
is the number of customers in the instance and αTsi ∈ {0.1, 0.2, 0.3, 0.4} is a parameter. The hazardous
customers are randomly chosen among all customers. Next, we assign a value for the exponential
distribution parameter λi to each hazardous customer. In our generation process, λi is chosen uniformly
at random between 0.05 and 0.1. Finally, to make hazardous customers more attractive, we multiply
their original profit by a parameter βTsi ∈ {2, 3, 4, 5}.

Following the above procedure, we generate 784 instances (49 Tsiligirides OP instances × 4 values of
αTsi × 4 values of βTsi).

6.2 Lifting and valid inequalities

In this section we measure the impact of lifting constraints (7) and (8) into, respectively, (13) and
(14). We also assess the impact of adding valid inequalities (15)–(18). For our benchmark, we use the
continuous relaxation of the non-linear model as the baseline, and incrementally add lifting and valid
inequalities. As discussed in Section 4.4, we calculate the solution of the continuous relaxation using the
Franke-Wolfe algorithm on the convexified problem in which we replace the objective function with its
negative logarithm. Once the optimal solution is returned, in terms of variables y and w, we compute
the original objective function and use the corresponding value.

The six models we tested are:

• Base Model, with constraints (3)–(9).

• Lift, in which inequalities (13) and (14) replace, respectively, (7) and (8).

• The four models Lift + (15), Lift + (15)–(16), Lift + (15)–(17), and Lift + (15)–(18), in
which we incrementally add valid inequalities.

Table 1 shows the results of our experiment. For a given instance and a given model out of the six
presented above, we compute the gap (columns “Gap%”) as

Gap% = 100 · UB− BKS
UB .

In this formula, UB is the upper bound obtained solving the model; note that we solve the continuous
relaxation of the HOP and, hence, obtain upper bounds. BKS is the best known solution, obtained
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Figure 5: An example instance in which variables wi take value 0 for customers visited in the optimal
solution of the continuos relaxation of the HOP.

by taking the best integer feasible solution found in all experiments of Section 6 for the given instance.
Columns “T (s)” report the runtime needed to solve the model, in seconds. The values in each row are
averaged over all instances generated using the corresponding values of αTsi and βTsi (first two columns).

Base Model Lift Lift + (15) Lift +
(15)–(16)

Lift +
(15)–(17)

Lift +
(15)–(18)

αTsi βTsi Gap% T (s) Gap% T (s) Gap% T (s) Gap% T (s) Gap% T (s) Gap% T (s)

0.1 2 28.42 0.1 25.13 0.1 14.99 0.7 14.99 0.7 14.99 0.8 5.59 6.0
0.1 3 34.61 0.0 31.61 0.0 16.70 0.7 16.70 0.7 16.70 0.7 8.23 5.7
0.1 4 40.72 0.1 38.27 0.0 20.62 0.7 20.62 0.7 20.62 0.7 12.95 6.1
0.1 5 41.38 0.1 39.06 0.1 20.86 0.7 20.86 0.7 20.86 0.7 12.96 6.4
0.2 2 41.08 0.2 38.21 0.2 16.42 0.8 16.42 0.8 16.42 0.8 8.00 6.4
0.2 3 48.19 0.2 46.12 0.3 19.58 0.8 19.58 0.8 19.58 0.9 12.62 6.5
0.2 4 52.80 0.2 51.10 0.2 22.43 0.8 22.43 0.8 22.43 0.9 16.40 6.8
0.2 5 56.55 0.2 55.15 0.2 25.91 0.8 25.91 0.8 25.91 0.9 20.49 6.7
0.3 2 48.81 0.2 46.36 0.2 16.55 0.8 16.55 0.8 16.55 0.9 9.29 5.8
0.3 3 57.89 0.3 56.10 0.3 21.52 0.9 21.52 0.9 21.52 1.0 15.30 8.0
0.3 4 63.00 0.2 61.68 0.2 27.17 0.9 27.17 0.9 27.17 1.0 21.91 6.7
0.3 5 67.12 0.2 66.12 0.2 31.21 0.9 31.21 1.0 31.21 1.0 26.90 8.3
0.4 2 57.11 0.2 55.09 0.2 18.45 0.8 18.45 0.9 18.45 0.9 11.78 5.8
0.4 3 65.30 0.3 63.92 0.3 25.70 0.8 25.70 0.9 25.70 1.0 19.86 6.8
0.4 4 68.54 0.3 67.43 0.2 28.33 0.9 28.33 0.9 28.33 1.0 23.25 6.6
0.4 5 72.46 0.3 71.61 0.2 33.51 0.8 33.51 0.9 33.51 1.0 29.09 7.0

Overall 52.75 0.2 50.81 0.2 22.50 0.8 22.50 0.8 22.50 0.9 15.91 6.6

Table 1: Impact of lifting and valid inequalities on the continuous relaxation of the problem, solved via
the Frank-Wolfe algorithm. Columns “Gap%” report the optimality gap with respect to the best known
primal solution. Columns “T (s)” report the time in seconds.

The results show that lifting the MTZ-like constraints has a modest but positive impact on the bound,
and no large effect on the solution time which, in any case, remains below 1 second. Valid inequality
(15) has a larger impact, driving the average gap down from 50.81% to 22.50%. Inequalities (16) and
(17) do not significantly change the gaps, and they slightly increase the computation time. Finally,
separating subtour elimination constraints (18) further reduced the average gap to 15.91%. Because
the separation procedure is relatively expensive, average solution times raise from 0.8 to 6.6 seconds.
We judge, however, that the better solution quality obtained separating (18) justifies the corresponding
increase in compute time.

The large impact of SECs (18) is not surprising, because it is well-known that they provide a tighter
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continuous relaxation compared to the MTZ-like constraints in many other routing problems [4]. The
role of valid inequality (15), on the other hand, deserves some explanation. Its main role is to prevent
fractional solutions in which a customer i is visited, i.e., yi > 0,

∑
(i,j)∈A xij > 0, and

∑
(j,i)∈A xji > 0,

but the value of corresponding variable wi is zero. Such solutions, in our experience, occur quite often.
Figure 5 shows an example instance in which two of the three visited customers have wi = 0 in the
optimal fractional solution. The four vertices (depot 0 and three customers) are placed at the corners
of the [0, 1] × [0, 1] square and distances are Euclidean. The profits are p1 = p3 = 10, and p2 = 20.
Values of λ are λ1 = 0, λ2 = 0.05, and λ3 = 0.1. The time bound is T = 10.

The optimal fractional solution is y1 = y2 = y3 = 1, w1 = 1, w2 = w3 = 0. The value of the x variables
is given in the figure: dotted arrows indicate a value of 0.23, dashed arrows of 0.77, and the solid arrow
denotes x10 = 1. Inequality (9) forces w1 = 1. However, neither (8) nor (9) are binding for w2 and w3.
Take, for example, i = 2: constraints (8) are

w2 ≥ w1 +
√
2−M(1− x21) = w1 +

√
2− 10.41 = w1 − 9

w2 ≥ w3 + 1−M(1− x23) = w3 + 1− 9.59 = w3 − 8.59,

and constraint (9) simply states w2 ≥ 0. Therefore, solutions with w2 = 0 are feasible for the continuous
relaxation of the HOP and, given the large penalty carried in the objective function when w2 > 0, they
are rewarded.

Valid inequality (15), despite its simplicity, cuts away such solutions. For i = 2, for example, the
inequality states that

w2 ≥ 1 · x20 +
√
2 · x21 + 1 · x23.

Because
∑

(2,j)∈A x2j = 1, this implies that w2 is at least 1.

In light of the results presented in Table 1, in the rest of the experiments we will use the lifted version
of the MTZ constraints, together with valid inequalities (15) and (18). We remark, however, that we
can use constraints (18) only with LP or MIP solvers, because the non-linear solver Baron does not
implement a callback mechanism to separate cuts.

6.3 Upper bounds

We next analyse the quality of the upper bounds proposed in Section 4. We present the results of our
analysis in Table 2. Columns “Gap%” and “T (s)” have the same meaning as in Table 1; the meaning
of column “Val%” is discussed below.

We consider the following upper bounds:

1. UB-Lin: bound obtained through the linear approximation of the objective function (see Sec-
tion 4.2).

2. UB-PwLin. Similar to bound UB-Lin, but we use the piecewise-linear approximation of the
objective function (see Section 4.3).

3. UB-Cont. The upper bound from the optimal solution of the continuous relaxation (see Sec-
tion 4.4).

4. UB-SSR. The bound obtained removing the elementarity requirement, and using the corres-
ponding state-space-relaxed (SSR) dynamic programming algorithm (see Section 5.1). In these
experiments, we did not use the strengthening which forbids 2-cycles.

5. UB-SSR-2CE. Similar to bound UB-SSR, but using the strengthening which forbids 2-cycles.

Bounds UB-Lin, UB-PwLin, and UB-Cont all use the lifted version (13)–(14) of the MTZ-like in-
equalities, as well as valid inequalities (15) and (18). Constraints (18), which are the subtour elimination
constraints, are separated on integer and fractional solutions alike.

Regarding the time limits used, we note the following:
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UB-Lin UB-PwLin UB-Cont UB-SSR UB-SSR-2CE

αTsi βTsi Gap% T (s) Gap% T (s) Gap% T (s) Val% Gap% T (s) Val% Gap% T (s)

0.10 2 9.97 29.3 6.95 22.5 5.59 5.9 28.57 34.58 2742.3 20.41 13.81 3020.8
0.10 3 16.29 33.2 11.70 30.3 8.23 5.4 28.57 29.83 2722.1 20.41 14.61 3035.8
0.10 4 21.37 35.9 15.17 34.2 12.95 5.9 28.57 28.79 2772.4 18.37 10.63 3015.6
0.10 5 23.31 36.7 17.41 35.8 12.96 6.2 28.57 31.86 2769.0 16.33 11.45 3046.9
0.20 2 21.65 36.5 15.99 33.0 8.00 6.2 22.45 35.30 2893.3 16.33 16.05 3067.6
0.20 3 31.66 41.6 24.05 37.7 12.62 6.1 20.41 30.94 2964.5 14.29 14.66 3126.5
0.20 4 37.87 44.8 29.49 43.1 16.40 6.8 24.49 25.87 2866.6 16.33 8.56 3094.0
0.20 5 40.43 43.3 32.24 42.1 20.49 6.5 24.49 26.48 2876.1 14.29 8.28 3112.4
0.30 2 31.03 44.7 23.16 40.5 9.29 5.9 22.45 29.69 2975.2 16.33 10.15 3075.1
0.30 3 41.80 45.6 33.18 43.9 15.30 7.7 20.41 30.74 2978.2 14.29 9.80 3125.2
0.30 4 47.50 46.0 39.03 45.5 21.91 6.2 24.49 25.40 2915.6 14.29 10.73 3117.5
0.30 5 53.69 48.3 45.18 47.8 26.90 7.4 20.41 23.72 2990.2 14.29 7.41 3105.1
0.40 2 40.15 46.1 32.29 44.1 11.78 5.6 22.45 33.27 2941.4 16.33 10.45 3080.6
0.40 3 52.43 49.3 43.90 48.7 19.86 6.4 22.45 28.00 2950.5 18.37 6.81 3090.8
0.40 4 55.92 48.7 47.34 48.4 23.25 6.3 26.53 21.47 2826.6 16.33 8.14 3102.0
0.40 5 60.25 49.1 52.45 48.7 29.09 7.0 22.45 23.10 2933.4 14.29 8.86 3126.0

Overall 36.60 42.4 29.36 40.4 15.91 6.3 24.23 28.73 2882.3 16.33 10.77 3083.9

Table 2: Comparison of the five upper bounds. Columns “Gap%” report the optimality gap with the
best-known primal solution. Columns “T (s)” report the time in seconds. Columns “Val%” give the
percentage of instances for which a valid upper bound was produced in dynamic-programming-based
bounds.

• We first remark that, when computing bounds UB-Lin and UB-PwLin, if the solution is aborted
due to reaching a given time limit, we can use the best upper bound returned by the solver as
an upper bound for the HOP. We initially ran our experiments with two possible time limits of 1
hour and 60 seconds. We noticed that there was little difference in the quality of the bound, no
matter if the MIP was given the larger or the smaller time limit. Therefore, we decided to use the
60-second time limit.

• During preliminary experiments, we noticed that bound UB-Cont was always computed in less
than 30 seconds. We therefore imposed no time limit to compute this bound.

• Different from UB-Lin and UB-PwLin, the labelling algorithms provide valid upper bound only
if they finish within the time limit (an early stop provides an invalid upper bound). However,
these algorithms turn out to be slow and they do not complete most of the time, even when given
a large time limit of 1 hour. Column “Val%” in Table 2 reports the percentage of instances for
which the algorithm completed within the time limit and, thus, produced a valid upper bound.
Then, in column “Gap%” the average is computed over these instances. Column “T (s)” reports
the average time over all instances.

Table 2 shows that finding tight dual bounds for the HOP is hard. The best method, among those
that always provide a valid bound, is to solve the continuous relaxation. The average gap obtained by
UB-Cont is 15.91% and the average solution time is 6.3 s.

Dynamic programming bounds are too computationally expensive: even if UB-SSR-2CE’s gaps are
smaller (10.77%), this method only yields a valid bound for 16.33% of the instances and takes a much
longer time compared to UB-Cont. Part of the reason for the poor performance of this bound lies in
the nature of the HOP, which is not compatible with popular speed-up techniques. For example, most
state-of-the-art labelling algorithms for routing problems use bidirectional labelling, in which labels
correspond to partial paths both from and to the depot (see, e.g., [32, 33]). In the HOP, however, we
can only consider partial paths from a customer to the depot, because we must know the travel time
after visiting each customer in the path in order to evaluate the cost of a label.
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Regarding the bounds coming from the relaxation of the objective function, as expected UB-PwLin
gives lower gaps than UB-Lin (objective (27) is tighter than objective (23)), while the runtimes are
comparable. Both bounds, however, have larger gaps compared to UB-Cont. The reason is that the
objective function used in these bounds does not penalise enough the risk associated with visiting time-
bomb customers, because of the “local hazard” property (see Section 4.1). For example, in best-known
integer solutions of the HOP, on average, only 5.49% of the visited customers are time-bomb. This
number increases to 27.46% in the solutions produced by UB-PwLin. Analogously, in best-known
integer solutions of the HOP, time-bomb customers appear in the tour, on average, at 96% of its length,
i.e., at the very end of the tour. By contrast, they appear at 70% of the tour length, on average, in
UB-PwLin’s solutions.

6.4 Lower bounds

In this section we investigate the quality of primal feasible solutions found by the black-box non-linear
solver and the labelling algorithm described in Section 5. For a given instance and a given lower bound
LB, we report two values:

G1% = 100 · BKS− LB
BKS , G2% = 100 · UBc − LB

UBc
,

where UBc is the value of the upper bound UB-Cont. Thus, G1 provides a gap with the best known
solution and is influenced by the quality of the primal solutions found. G2, on the other hand, provides
a gap with a chosen upper bound.

LB-NLModel LB-NLCModel LB-NLCModel∗ LB-Label

αTsi βTsi G1% G2% T (s) G1% G2% T (s) G1% G2% T (s) G1% G2% T (s)

0.10 2 0.00 5.59 69.6 0.00 5.59 27.0 0.00 5.59 102.1 47.14 51.25 3177.7
0.10 3 0.00 8.23 103.0 0.00 8.23 24.7 0.00 8.23 129.5 45.47 51.34 3188.4
0.10 4 0.00 12.95 139.9 0.00 12.95 33.5 0.00 12.95 155.8 45.08 54.07 3182.6
0.10 5 0.00 12.96 216.4 0.00 12.96 26.5 0.00 12.96 192.8 44.23 53.11 3183.4
0.20 2 0.00 8.00 198.9 0.00 8.00 47.6 0.00 8.00 193.3 46.52 52.54 3185.7
0.20 3 1.21 13.74 387.4 0.00 12.62 26.8 0.00 12.62 245.7 46.66 55.35 3190.9
0.20 4 1.94 17.99 557.5 0.00 16.40 35.8 0.00 16.40 507.9 47.63 57.76 3184.7
0.20 5 9.03 28.11 1058.7 0.00 20.49 39.3 0.00 20.49 651.5 46.40 59.38 3182.8
0.30 2 0.00 9.29 282.1 0.00 9.29 9.7 0.00 9.29 105.8 50.18 56.77 3188.8
0.30 3 7.77 22.28 864.6 0.00 15.30 16.1 0.00 15.30 341.2 48.23 58.35 3188.0
0.30 4 14.37 33.89 1406.0 0.00 21.91 28.9 0.00 21.91 1056.2 47.45 61.38 3191.3
0.30 5 11.85 35.91 1643.5 0.00 26.90 240.8 0.30 27.11 1482.3 45.27 61.63 3190.0
0.40 2 5.60 16.97 844.0 0.00 11.78 12.8 0.00 11.78 389.7 50.93 58.80 3193.3
0.40 3 14.62 32.36 1614.1 0.00 19.86 14.8 0.00 19.86 1142.4 49.05 61.39 3191.4
0.40 4 25.42 43.32 1816.9 0.00 23.25 160.5 0.44 23.54 1600.8 48.57 61.88 3188.7
0.40 5 28.60 50.77 2086.4 0.00 29.09 382.7 2.35 30.78 2068.7 46.65 63.69 3191.6

Overall 7.53 22.02 830.6 0.00 15.91 70.5 0.19 16.05 647.9 47.22 57.42 3187.5

Table 3: Upper bounds comparison. Columns “G1%” report the optimality gap with the best-known
primal solution. Columns “G2%” list the optimality gap with the upper bound from the continuous
relaxation of the model. Columns “T (s)” report the time in seconds.

We consider the following four lower bounds, which we obtain running either the non-linear solver or
the labelling algorithm, with a time limit of 1 hour:

1. LB-NLModel. It is the best feasible solution found by solver Baron, using the model with the
lifted MTZ constraints and valid inequality (15). Recall that, because Baron does not support
user callbacks and dynamic cut generation, we cannot use valid inequalities (18).
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Figure 6: Change in six solution metrics, when instance generation parameters αTsi and βTsi change.
Each value in the tables is an average over all instances which share the same generation parameters.

2. LB-NLCModel. Similar to bound LB-NLModel, but replacing the objective function with
its logarithm, to ensure concavity. The value of the bound is then calculated recomputing the
original objective value.

3. LN-NLCModel∗. Similar to bound LB-NLCModel, but we disable the lifting of MTZ con-
straints and we do not add valid inequality (15). Lifting and valid inequality (15), in fact, were
identified as effective by the experiments describes in Section 6.2, which used the continuous relax-
ation as their baseline model. By reporting the results of LN-NLCModel∗, we provide evidence
that they are also effective for the integer non-linear model.

4. LB-DP. Solution computed using the dynamic programming algorithm presented in Section 5.
The algorithm returns the best non-dominated feasible solution found within the time limit.

We note that, while for LB-NLModel we could also report the solver gap (i.e., the gap between the
best lower and upper bounds reported by Baron at the end of the computation), we cannot do the same
for the two models which use the concave objective function. The reason is that Baron does not provide
a way to access the variables’ values of the solution which produces the dual bound and, therefore, we
cannot recompute the original objective.

Table 3 reports the results of the experiments. Comparing the results under headers LB-NLModel
and LB-NLCModel, we note that convexifying the objective function has a considerable impact on
the solver’s ability to find the optimum. Further comparing these results with those produced by LB-
NLCModel∗ shows that convexification mainly reduces the gaps, while lifting and valid inequalities
mainly reduce the compute time. The combination of these two techniques allows to find good quality
solutions in short times. Finally, the labelling algorithm is not competitive with model-based approaches,
neither in runtime nor in solution quality.
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6.5 Analysis of the solutions

In this section, we explore the properties of high-quality solutions and how they vary depending on the
instance generation parameters. For each instance, we use the best solution returned by the non-linear
solver (LB-NLCModel presented in Section 6.4). Figure 6 shows how the value of six metrics changes
when varying instance generation parameters αTsi and βTsi. The considered metrics are the following:

• %T used. This is the percentage of the time limit T used by the solution. High-quality solutions
of the (purely deterministic) OP usually use almost 100% of the time limit [16, 34]. Intuitively, we
could expect that the more time-bomb customers are in the instance and the higher is their profit,
the lower this value will be. After visiting a time-bomb customer with a high enough profit, it
is convenient to go back to the depot without visiting other customers to limit the probability of
exploding. Thus, higher values of βTsi could be correlated with lower %T used. Furthermore, high-
quality solutions will visit only a few time-bomb customers. If there are not enough deterministic
customers to fill the remaining available time, it might be more convenient to return to the depot
earlier. Therefore, we also expect that higher values of αTsi are correlated with lower %T used.
While increasing αTsi, indeed, causes a decrease in this metric, the pattern is not clear with respect
to changes in βTsi. Further inspection of the solutions revealed that high-quality tours visit time-
bomb customers last and tend to use all the available time before. Therefore, an increase in the
profits of time-bomb customers (higher values of βTsi) does not affect the percentage of the time
limit used. Only the availability of enough deterministic customers to visit (i.e., lower αTsi) plays
a role.

• %p collected. This is the percentage of profit collected by the vehicle over the total profit∑
i∈V pi in the instance. When more customers are time-bomb (increasing αTsi) this indicator is

lower because the majority of time-bomb customers are not visited and thus a lot of profit is not
collected. Increasing βTsi also lowers this indicator. When the profit of time-bomb customers is
higher, in fact, it constitutes a higher share of the total profits. Visiting few time-bomb customers
then results in renouncing a higher percentage of the total profit.

• % visited TB. It is the percentage of time-bomb customers over all customers visited by a tour.
For example, visiting one time-bomb and nine deterministic customers would result in a value of
10%. As we expect, a higher number (higher values of αTsi) and higher profits (higher values of
βTsi) for time-bomb customers are both associated with more visits.

• %tt after det and %tt after TB. These metrics report the average value of τi := 100 ·
wi∑

(i,j)∈A tijxij
computed over visited deterministic and time-bomb customers, respectively. Recall

that wi represents the travel time after customer i ∈ V and that
∑

(i,j)∈A tijxij is the tour travel
time. Therefore, τi is the percentage of travel time after visiting i. Note that if we averaged over all
visited customers (without distinguishing between deterministic and time-bomb) then we would
expect this value to be close to 50%. We can use these two metrics to confirm our hypothesis that
high quality solutions visit time-bomb customers towards the end of the tour: “%tt after TB” is
much smaller than “%tt after det”. We also note that higher time-bomb profits allow more travel
time after visiting time-bomb customers: we can take a slightly higher risk if the reward is also
higher.

• Avg λ of visited ×103. This indicator is the average value of λi (the parameter of the exponential
random variable) over customers visited by the tour. Deterministic customers are assumed to have
λi = 0. Because this indicator results in small values, to increase the readability of Figure 6, we
multiply it by a factor of 103. We note that this indicator increases with both αTsi and βTsi and
follows quite closely indicator “% visited TB”.

7 Conclusions
In this paper we introduced the Hazardous Orienteering Problem, which models a variant of the classical
OP in which the parcels picked up at some “time-bomb” customers have a probability of exploding which
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depends on how long they travel on the vehicle and, if any parcel explodes, the entire collected profit
is lost. The problem has interesting practical applications in cash transportation problems, routing of
hazardous material and law enforcement with drones. The peculiar nature of the problem, due to the
probability of explosion, makes its natural formulation more intriguing than the one of the classical OP,
resulting in the maximisation of a non-concave objective function. This of course has implications on
solution procedures: the complexity of the objective function makes the problem harder to solve than
the standard OP. Thus, in this paper, we present multiple ways for deriving both upper bounds (based
on integer, piece-wise integer and continuous relaxations, as well as on dynamic programming) and lower
bounds (based on dynamic programming and black-box non-linear solvers). Our goal is to present and
investigate multiple techniques, rather than focusing on one of them and fine-tune its performance. We
thus perform an extensive computational analysis to compare the different approaches and determine
the most promising ones. Our results show that, in terms of upper bounds, the continuous relaxation
is the one leading to the best results. When solving the non-linear model with a black-box solver,
transforming the objective function to make it concave, lifting existing inequalities and adding new
valid ones has a large impact on the solver’s performance. Indeed, a main takeaway of this paper is
that modern non-linear solvers can achieve notable results if the user successfully strengthens their
formulation. Finally, the analysis of solution features reveals that the solution structure depends on
instance parameters, specifically, the number and profitability of time-bomb customers.

We envisage multiple directions for future research. On one side, one might focus on improving the
approaches for determining both upper and lower bounds, for example, through stronger relaxations. On
the other side, problem generalisations are also of interests, for example the case with multiple vehicles
or a multi-objective extensions in which profit collected, travel time and probability of explosion define
a three-dimensional Pareto frontier. Another possible extension involves using different probability
distributions, tailored for specific application area. One could even introduce more complex modelling
choices in which the probability of a catastrophic event does not depend uniquely on the travel time,
but also on the specific arcs used after visiting the customer. For example, some roads are more suitable
than others for armed robberies; bumpy roads will put lithium ion batteries under more mechanical
stress, etc.
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