
Solving Longest Common Subsequence Problems via a
Transformation to the Maximum Clique Problem

Christian Blum1, Marko Djukanovic2, Alberto Santini3, Hua Jiang4, Chu-Min Li5,6, Felip Manyà1,
and Günter R. Raidl2

1Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain —
{christian.blum,felip}@iiia.csic.es

2Institute of Logic and Computation, TU Wien, Vienna, Austria —
{djukanovic,raidl}@ac.tuwien.ac.at

3Universitat Pompeu Fabra, Barcelona, Spain — alberto.santini@upf.edu
4Yunnan University, Kunming, China — huajiang@ynu.edu.cn

5University of Picardie Jules Verne, Amiens, France — chu-min.li@u-picardie.fr
6Huazhong University of Science and Technology, Wuhan, China

March 5, 2020

Abstract

Longest common subsequence problems find numerous applications in bioinformatics, data compres-
sion and text editing, just to name a few. Even though numerous heuristic approaches were published in
the related literature for many of the considered problem variants during the last decades, solving these
problems exactly remains an important challenge. This is particularly the case when the number and the
length of the input strings grows. In this work we present a way to transform the classical longest common
subsequence problem and some of its variants into the maximum clique problem. Moreover, we propose a
technique to reduce the size of the resulting graphs. Finally, a comprehensive experimental evaluation of a
recent exact maximum clique solver and a recent heuristic maximum clique solver is presented. Numerous
problem instances from benchmark sets taken from the literature were solved to optimality in this way.

1 Introduction

One of the common measures when comparing two (or more) strings is the length of their longest common
subsequence Iliopoulos and Sohel Rahman (2009); Castelli et al. (2013). A subsequence is a string obtained by
possibly deleting characters from another string. For example, AGT is a subsequene of ADDAGTA obtained
by deleting the two occurrences of letter D and the last two occurrences of letter A.

The classical longest common subsequence (LCS) problem asks to find the longest subsequence common to
a given set of strings. The LCS problem is one of the central problems in bioinformatics, often with strings
representing segments of RNA or DNA Gusfield (1997); Smith and Waterman (1981); Jiang et al. (2002). Other
applications arise in computer science, in the fields of data compression, text editing Kruskal (1983), the
production of circuits in field programmable gate arrays Brisk et al. (2004) and file comparison Storer (1988);
Aho et al. (1983).

The LCS problem is NP-hard for an arbitrary number of input strings Maier (1978). If the number of
strings is a constant, the problem is polynomially solvable by dynamic programming Gusfield (1997). Standard
dynamic programming approaches for this problem require a time of 𝑂 (𝑛𝑚) where 𝑛 is the length of the
longest input string and 𝑚 is the number of strings. This complexity requirement makes the LCS problem
hard to solve in practice with exact methods.

Real-life applications also require the solution of variants of the LCS problem in which additional con-
straints are imposed on the solutions. Examples concern the repetition-free longest common subsequence
(RFLCS) problem Adi et al. (2010), the constrained longest common subsequence (C-LCS) problem Tsai (2003),

1

and the generalized constrained longest common subsequence (GC-LCS) problem Chen and Chao (2011). Oth-
ers are mentioned in survey papers such as Bonizzoni et al. (2010). Henceforth, we refer to the variants of the
classical LCS problem, in general, as LCS-type problems.

Despite LCS-type problems being present in the literature for almost forty years, their computational diffi-
culty causes that research is still active on this topic. In particular, in this workwe present an approach to solve
various LCS-type problems by transforming them into instances of themaximum clique (MC) problem Bomze
et al. (1999). The central idea of the transformation is to construct, for each instance, a conflict graph Lee et al.
(2006). Hereby, an independent set in the conflict graph corresponds to a common subsequence concerning
the original LCS instance. Moreover, a maximum independent set in the conflict graphs corresponds to a
longest common subsequence of the LCS instance. Furthermore, note that finding a maximum independent
set (MIS) in the conflict graph is equivalent to finding a largest clique on the complement graph of the conflict
graph. Therefore, an LCS problem instance can be solved by finding a largest clique in the complement of the
conflict graph.

The advantages of this approach are twofold. First, because of a steady improvement of the solvers for
the MC problem, we have high-performing algorithms at our disposal that may make solving an MC problem
on the complement of the conflict graph faster than solving the original LCS problem with known exact
algorithms. Second, we will show that our transformation—in addition to the classical LCS problem—can be
used to tackle other LCS-type problems from the literature, thus providing a unified approach for different
LCS-type problems.

In the rest of this section we provide a short review of recent exact methods proposed for LCS-type prob-
lems. In Section 2 we provide a description of the LCS-type problems considered in this work, detailing the
transformations required to build the conflict graphs and providing further literature references for solution
methods tailored to each specific variant. We provide computational evidence of the validity of our approach
in Section 4. To this end, we compare the following three techniques with specialised algorithms for each of
the considered LCS-type problems: (1) the Integer Linear Programming (ILP) solver Cplex applied to solve
the MIS problem in the conflict graph; (2) Lmc Jiang et al. (2016); Li et al. (2017), nowadays one of the best
available exact MC solvers; and (3) Lscc-BmsWang et al. (2016), nowadays one of the best available heuristic
MC solvers.

1.1 Literature review

During the last decade, the literature has seen new and efficient heuristic approaches to LCS-type prob-
lems Blum and Festa (2016), but it still remains an important challenge to solve these problems to optimality.
The dynamic programming approach of Gusfield (1997), which was mentioned above, becomes impractical
when the number𝑚 of input strings grows. At the same time, real-life applications of LCS-type problems also
involve long strings with large values of 𝑛, making a runtime of𝑂 (𝑛𝑚) impractical. Another exact approach is
to model LCS-type problems as Integer Linear Programms (ILPs), if possible, and then apply general-purpose
ILP solvers, such as Cplex or Gurobi, to solve the programms to optimality. Computational experiments
by Lee and Gupta (2009) in the context of two ILP models for the classical LCS problem showed that this
approach turns impractical already for small values of𝑚.

A recent branch of work on exact techniques is the development of extensions of the classical A* algo-
rithm Hart et al. (1968). One advantage of A* is that it can be hybridized with heuristic algorithms Wang
et al. (2010); Djukanovic et al. (2019). Djukanovic et al. (2018) developed two A*-based hybrid variants for
the palindromic LCS (see Section 2.3), which belong to the class of anytime algorithms (exact algorithms that
return a feasible solution of reasonable quality whenever they are terminated Vadlamudi et al. (2012)). More-
over, Djukanovic et al. (2019) present a related study about A*-based anytime algorithms for the classical LCS
problem.

2 Considered problems and transformations

We start by describing how to transform an instance of the classical LCS problem into a conflict graph in
which a maximum independent set corresponds to a longest common subsequence of the original problem
instance. Henceforth, an LCS problem instance is described by a pair (𝑆, Σ) in which 𝑆 = {𝑠1, . . . , 𝑠𝑚} is a
set of input strings over the finite alphabet Σ. We denote the length of string 𝑠𝑖 ∈ 𝑆 as |𝑠𝑖 | and the element

2

A C T A G

T A G C

AT T A C G

Layer 1

Layer 2

Layer 3

Figure 1: The undirected multi-layered graph 𝐺 obtained from the LCS instance
(
𝑆 = {𝑠1 = ACTAG, 𝑠2 =

TAGC, 𝑠3 = ATACG}, Σ = {A,C, T,G}
)
.

at position 𝑗 in string 𝑠𝑖 as 𝑠𝑖 [𝑗]. Given such an instance, we construct an undirected multi-layered graph
𝐺 = (𝑉 , 𝐸) whose vertex set 𝑉 is partitioned into sets {𝑉1, . . . ,𝑉𝑚}. Each 𝑉𝑖 is called a layer and consists of
|𝑠𝑖 | vertices. Note that each layer represents exactly one input string and each vertex of the layer represents
a position in the string. More specifically, 𝑉𝑖 = {𝑣𝑖,1, . . . , 𝑣𝑖, |𝑠𝑖 |}, where vertex 𝑣𝑖, 𝑗 represents the 𝑗-th position
of input string 𝑠𝑖 .

We also partition the edge set 𝐸 of the multi-layered graph𝐺 into sets {𝐸1, . . . , 𝐸𝑚−1}, where 𝐸𝑖 is the set
of edges between layers 𝑉𝑖 and 𝑉𝑖+1. Set 𝐸𝑖 contains an edge 𝑒 𝑗,𝑘 connecting vertices 𝑣𝑖, 𝑗 and 𝑣𝑖+1,𝑘 if and only
if 𝑠𝑖 [𝑗] = 𝑠𝑖+1 [𝑘], i.e., if the letter at position 𝑗 of input string 𝑠𝑖 is equal to the letter at position 𝑘 of input
string 𝑠𝑖+1. Figure 1 shows an example of this graph construction for three strings over an alphabet of size
four.

Any sequence 𝑝 = (𝑣1, 𝑗1, 𝑣2, 𝑗2, . . . , 𝑣𝑚,𝑗𝑚) of 𝑚 vertices and with the 𝑖-th vertex of 𝑝 being from the 𝑖-th
layer of 𝐺 , is called a complete path in 𝐺 if and only if it fulfils the following conditions:

1. The corresponding edge between every pair of consecutive vertices of 𝑝 exists in 𝐺 : 𝑒 𝑗𝑖 , 𝑗𝑖+1 ∈ 𝐸𝑖 for all
𝑖 = 1, . . .𝑚 − 1.

2. The letters at the positions of the input strings corresponding to the 𝑚 − 1 vertices are all the same:
𝑠1 [𝑗1] = 𝑠2 [𝑗2] = . . . = 𝑠𝑛 [𝑗𝑚].

Given a complete path 𝑝 = (𝑣1, 𝑗1, 𝑣2, 𝑗2, . . . , 𝑣𝑚,𝑗𝑚), the common letter at positions 𝑗1, . . . , 𝑗𝑚 of the 𝑚 input
strings is also called the letter of 𝑝 . We denote it by ℓ (𝑝).

Two complete paths 𝑝 and 𝑞, with 𝑝 = (𝑣1, 𝑗1, 𝑣2, 𝑗2, . . . , 𝑣𝑚,𝑗𝑚) and 𝑞 = (𝑣1,𝑘1, 𝑣2,𝑘2, . . . , 𝑣𝑚,𝑘𝑚), are said to cross
if and only if there is at least one index 𝑙 ∈ {1, . . . ,𝑚} such that 𝑗𝑙 ≤ 𝑘𝑙 and at least one index 𝑟 ∈ {1, . . .𝑚},
𝑟 ≠ 𝑙 , such that 𝑗𝑟 ≥ 𝑘𝑟 . To make the concept of crossing paths clearer, refer to Figure 2 which shows two
examples based on the instance depicted in Figure 1. In the left figure, the solid and dashed paths are crossing
because they contain crossing edges between layers 1 and 2. In the right figure, they cross because they
contain a common vertex in layer 2.

Given these notations, the classical LCS problem can be transformed into the maximum independent set
(MIS) problem as follows. First, note that solving the classical LCS problem amounts to finding the largest set
of non-crossing paths in the respective multi-layered graph 𝐺 . Based on 𝐺 we can create the conflict graph
𝐺c = (𝑉 c, 𝐸c) with a vertex for each complete path of 𝐺 and an edge between two paths iff they cross. Then,
solving the LCS problem is equivalent to solving theMIS problem in𝐺c which, in turn, is equivalent to solving
the MC problem in the complement of graph 𝐺

c
.

In the rest of this section we consider three LCS-type problems and show how analogous transformations
allow us to reduce each problem to a MC problem on the complement of a conflict graph.

2.1 Repetition-Free Longest Common Subsequence

The repetition-free longest common subsequence (RFLCS) problem Adi et al. (2010) is an LCS variant in which
valid solutions are further constrained to contain each possible letter at most once. It was introduced as a
comparison measure for sequences of different biological origin. In the related literature, this problem is

3

A C T A G

T A G C

AT T A C G

Layer 1

Layer 2

Layer 3

(a)

A C T A G

T A G C

AT T A C G

Layer 1

Layer 2

Layer 3

(b)

Figure 2: Two examples of complete paths that cross, based on the LCS instance from Figure 1. (a) Paths
𝑝 = (𝑣1,1, 𝑣2,2, 𝑣3,4) and 𝑞 = (𝑣1,3, 𝑣2,1, 𝑣3,1) cross because their corresponding edges between layers 1 and 2
cross. (b) Paths 𝑝 = (𝑣1,1, 𝑣2,2, 𝑣3,4) and 𝑞 = (𝑣1,4, 𝑣2,2, 𝑣3,2) cross because they both include vertex 𝑣2,2 from the
second layer.

generally considered for the case𝑚 = 2, that is, for two input strings. Note that even for𝑚 = 2 the problem
is APX-hard (which implies it is NP-hard), as shown by Adi et al. (2010).

Blum and Blesa (2018) proposed the current best specialized algorithm for this problem: a construct, merge,
solve and adapt (CMSA) approach in which the authors initialise the reduced sub-instance by beam search.
In Blum and Blesa (2018), the authors show how their algorithm outperforms other metaheuristics and the
application of Cplex to an ILP model of the problem.

To generate the conflict graph for the RFLCS problem, we first build the multi-layered graph𝐺 concerning
the two input strings, just like in the case of the classical LCS problem. Note that, due to the two input strings,
𝐺 will have two layers. Two complete paths 𝑝 and 𝑞 of 𝐺 are in conflict if they fulfil at least one of the
following two conditions:

1. 𝑝 and 𝑞 cross each other.

2. 𝑝 and 𝑞 have the same letter: ℓ (𝑝) = ℓ (𝑞). Note that this condition ensures that no letter appears more
than once in a solution.

2.2 Longest Arc-Preserving Common Subsequence

The second considered LCS variant is known as the longest arc-preserving common subsequence (LAPCS)
problem Evans (1999a). As in the case of the RFLCS problem, the LAPCS problem is studied for two input
strings/sequences in the literature. Note that, in the case of the LAPCS problem, the input strings are arc-
annotated. An arc annotation of a string 𝑠 is a pair of positions in 𝑠 , say (𝑖1, 𝑖2) with 𝑖1, 𝑖2 ∈ {1, . . . , |𝑠 |} and,
without loss of generality, 𝑖1 < 𝑖2. An arc-annotated sequence is a pair (𝑠, 𝑃𝑠) where 𝑠 is a string over some
finite alphabet Σ and 𝑃𝑠 is the set of arc annotations of 𝑠 . The LAPCS problem is then defined for two arc-
annotated sequences (𝑠1, 𝑃1) and (𝑠2, 𝑃2) as the problem of finding the longest common subsequence between
𝑠1 and 𝑠2 that fulfils the “arc-preservation” condition. This condition states that if there is an arc annotation
between two positions in 𝑠1 chosen for the solution, then there must also be an arc annotation between the
two corresponding positions in 𝑠2, and vice-versa.

Arc-annotated sequences are useful for the structural comparison of RNA sequences. Figure 3 shows an
example of an arc-annotated RNA sequence in which the arc annotations are indicated as solid lines linking
the nucleobasesACGT. Evans (1999b,a) introduced the LACPS problem and showed that it isNP-hard already
for two strings. Blum and Blesa (2018) proposed the best specialized algorithms for the LAPCS. Depending
on the problem instance characteristics, the state-of-the-art algorithm is either a heuristic based on problem
reduction, or an iterative probabilistic algorithm, both of which solve reduced ILP models. The authors com-
pared these algorithms with the application of Cplex to solve the MIS problem in the corresponding conflict
graphs.

To generate the conflict graph for a LAPCS problem instance consisting of (𝑠1, 𝑃1) and (𝑠2, 𝑃2), we first
construct the two-layered multi-graph 𝐺 based on 𝑠1 and 𝑠2, as done in the classical LCS problem case. Two
complete paths 𝑝 and 𝑞 are in conflict if and only if they fulfil at least one of the following two conditions:

4

C
C A U G C C G G A C G U A C G G A C A A A C G

C
C
G
C
ACUUCCUC

A
AAUUCAGA

C
GCACUUUU

A C A A G U G U
U

A C G C G C AU
U
G A GG G

G
G
U
A
A
G

GU C G G A G G
AAC
U U

C
U
U
CG

U
U

G
C
A
U
G

C
U C G U G A G GA

G
C
G
G
A G GA C G

A
AAGUCCU

G
C

CG
G
G
U
G
U A C CA

G
A
A
A

U
UCGA

U
C
U
CU

U
G

G
UUCGU

C
C
U
U

U G
A
G
A
UC

U
U

G
A
A
A

C G
C

A
C

C
CGAG

A
A

G
A

U
GU
C

U
U
U
U
A

G
U

G
CAAUGU

G
C
G
G
C A CCU

G
U

G A AA
A

GUC
AG

G
C
A
A
C
U

C
G

AUUCCGAC
U

A
A
U
C
UUGUCUGUAUGUCUGGUAUG

A
U
U

1
20

40

60
80

100

120

140

160

180

200

220

240

260

280

Schizosaccharomyces octosporus
nuclear RNase P RNA

Figure 3: Example of an arc-annotated sequence (RNA of Schizosaccharomyces octosporus). The connections
between different positions of the RNA sequence, indicated by short lines, are the members of the arc anno-
tation set. Note that this graphic was obtained from the RNase P Database Brown (1999).

1. 𝑝 and 𝑞 cross each other.

2. 𝑝 and 𝑞 do not cross each other, but the arc annotations are not preserved: the substring contains two
letters coming from positions linked by an arc in one of the two original strings, but not in the other.
Formally, this happens if, for some positions 𝑗1, 𝑘1 of 𝑠1 with 𝑗1 < 𝑘1 and some positions 𝑗2, 𝑘2 of 𝑠2 with
𝑗2 < 𝑘2, it holds that either: (𝑗1, 𝑘1) ∈ 𝑃1 and (𝑗2, 𝑘2) ∉ 𝑃2, or (𝑗2, 𝑘2) ∈ 𝑃2 and (𝑗1, 𝑘1) ∉ 𝑃1.

Figure 4 shows an example LAPCS instance. The solution depicted with dashed lines is infeasible because it
matches 𝑣1,2 and 𝑣1,4 in 𝑠1 with, respectively, 𝑣2,4 and 𝑣2,5 in 𝑠2. An arc annotation links the positions in 𝑠1 but
not in 𝑠2, thus violating condition 2 above. The solution depicted with solid lines, instead, is feasible.

T A G C

AT T A C G

Layer 1

Layer 2

Figure 4: This example shows the undirected multi-layered graph 𝐺 obtained from the LAPCS instance con-
sisting of (𝑠1 = TAGC, 𝑃1 = {(2, 4)}) and (𝑠2 = TATACG, 𝑃2 = {(1, 2), (2, 5)}). The solution in dashed lines
{𝑝 = (𝑣1,1, 𝑣2,1), 𝑞 = (𝑣1,2, 𝑣2,4), 𝑟 = (𝑣1,4, 𝑣2,5)} is not valid because arc (2, 4) ∈ 𝑃1 connects two chosen positions
in 𝑠1, while the corresponding chosen positions in 𝑠2 — that is, positions 4 and 5 — are not connected by an
arc from 𝑃2. The solution in solid lines is feasible.

5

2.3 Longest Common Palindromic Subsequence

Finally, we also consider the so-called longest common palindromic subsequence (LCPS) problem Chowdhury
et al. (2014). This is an LCS variant in which we look for a longest common subsequence 𝑠∗ of𝑚 input strings
such that 𝑠∗ is also a palindrome. Note that a string is a palindrome if it coincides with its reverse; the reverse
string of 𝑠 is a string 𝑠rev such that 𝑠rev [𝑖] = 𝑠 [|𝑠 | − 𝑖 + 1], for all 1 ≤ 𝑖 ≤

⌊
|𝑠 |
2

⌋
. For example, KAYAK is a

palindrome.
Chowdhury et al. (2014); Hasan et al. (2017); Inenaga and Hyyrö (2018) presented specialized exact al-

gorithms for the LCPS problem on two input strings (2–LCPS). The theoretical lower bound on solving the
2–LCPS is not known, but Abboud et al. (2015) hypothesise it is at least 𝑂 (𝑛4); if this were not the case, then
the famous strong exponential time hypothesis Calabro et al. (2009) would fail. Djukanovic et al. (2018, 2019)
presented the first works on instances with𝑚 > 2, introducing two A*-based hybrid anytime algorithms.

After generating the layeredmulti-graph𝐺 for the𝑚 input strings, in the sameway as in the cases outlined
before, the conflict graph is built as follows. The set of vertices 𝑉 c of the conflict graph 𝐺c consists of two
disjoint subsets of vertices: 𝑉single and 𝑉pairs. More specifically, 𝑉single contains a vertex 𝑣𝑝 for each complete
path 𝑝 ∈ 𝑃 , and 𝑉pairs contains a vertex 𝑣𝑝,𝑞 for each pair of complete paths 𝑝 ≠ 𝑞 with ℓ (𝑝) = ℓ (𝑞) that do
not cross each other. Notice that in the previous cases—that is, the classical LCS problem, the RFLCS problem,
and the LAPCS problem—the number of vertices in the conflict graph was equal to the number of complete
paths in the multi-layered graph𝐺 , say 𝑧. In contrast, the number of vertices in the conflict graph of the LCPS
problem is of the order O(𝑧 + 𝑧2). Finally, we define the edges of the conflict graph by the following conflict
relations:

1. Conflicts between vertices from𝑉single: these vertices are all in conflict with each other. This is because
the vertices from 𝑉single model the possibility to have a singleton letter in the middle of a solution.
For example, KAYAK has Y as a singleton letter in the middle. In contrast, KAAK for example, has no
singleton letter in the middle. As a solution can have at most one singleton letter in the middle, all
vertices from 𝑉single are in conflict with each other. As a consequence, all other vertices that form part
of a solution are from 𝑉pairs. In the case of KAYAK, for example, there would be two such vertices: one
representing the two K’s and one for the two A’s.

2. Conflicts between vertices from 𝑉pairs: to describe a conflict between two such vertices, it is actually
easier to state when they are not in conflict with each other. Consider two vertices 𝑣𝑝,𝑞, 𝑣𝑝′,𝑞′ ∈ 𝑉pairs,
with

𝑝 = (𝑣1, 𝑗1, . . . , 𝑣𝑚,𝑗𝑚)
𝑞 = (𝑣1,𝑘1, . . . , 𝑣𝑚,𝑘𝑚)
𝑝 ′ = (𝑣1, 𝑗 ′1, . . . , 𝑣𝑚,𝑗 ′𝑚)
𝑞′ = (𝑣1,𝑘′1, . . . , 𝑣𝑚,𝑘′𝑚)

and assume wlog that 𝑗1 < 𝑘1 and that 𝑗 ′1 < 𝑘 ′
1. Then 𝑣𝑝,𝑞 and 𝑣𝑝′,𝑞′ are not in conflict if either 𝑗𝑖 < 𝑗 ′𝑖 <

𝑘 ′
𝑖 < 𝑘𝑖 for all 𝑖 = 1, . . . ,𝑚, or 𝑗 ′𝑖 < 𝑗𝑖 < 𝑘𝑖 < 𝑘 ′

𝑖 for all 𝑖 = 1, . . . ,𝑚.

3. Conflicts between vertices from𝑉single and vertices from𝑉pairs: again, we state when there is no conflict
between two such vertices. Consider vertex 𝑣𝑝′ ∈ 𝑉single and vertex 𝑣𝑝,𝑞 ∈ 𝑉pairs, with

𝑝 = (𝑣1, 𝑗1, . . . , 𝑣𝑚,𝑗𝑚)
𝑞 = (𝑣1,𝑘1, . . . , 𝑣𝑚,𝑘𝑚)
𝑝 ′ = (𝑣1, 𝑗 ′1, . . . , 𝑣𝑚,𝑗 ′𝑚)

and assume wlog that 𝑗1 < 𝑘1. Then 𝑣𝑝′′ and 𝑣𝑝,𝑝′ are not in conflict if 𝑗𝑖 < 𝑗 ′𝑖 < 𝑘𝑖 for all 𝑖 = 1, . . . ,𝑚.

Notice that all vertices from𝑉pairs have weight 2 and, if chosen in the final clique, they will contribute for two
letters in the respective solution.

Figure 5 shows the multi-layerd graph for input strings TAGCAT and TATACG. Complete paths are shown
by lines and, in particular, we use dashed and dotted lines to highlight relevant paths concerning letters T and

6

Layer 1

Layer 2

T A G C

T A T A C G

A T

Figure 5: The multi-layered graph𝐺 obtained from the LCPS instance on the two input strings 𝑠1 = TAGCAT
and 𝑠2 = TATACG. This graph contains 10 complete paths, corresponding to the 10 vertices of the conflict
graph (𝑉single). Two pairs of non-crossing paths have the same letters: the first pair (with letter T) is indicated
in light grey and dashed lines, the second one (with letter A) is indicated in dark grey and dotted lines.

A. Note how the rightmost highlighted paths for T and A are crossing. Therefore, the potential solution TAAT
cannot be constructed. This string is only a substring of the first input string, but not of the second one. The
optimal solution in this example is, in fact, TAT.

3 Conflict graph reduction

The size of the conflict graphs (in terms of the number of vertices) mainly depends on the length and on the
number of input strings. Let 𝑛max := max𝑖=1,...,𝑚{|𝑠𝑖 |}. Then, the sizes of the conflict graphs can be expressed
as follows: O(𝑛𝑚max) in the case of the classical LCS problem, O(𝑛2max) in the case of the RFLCS and LAPCS
problems, and O(𝑛𝑚max + 𝑛2𝑚max) in the case of the LCPS problem. In fact, during preliminary experiments we
realized that the conflict graphs are too large, even for rather small problem instances from the literature, in
the cases of the classical LCS problem and the LCPS problem. Therefore, we henceforth focus exclusively on
the RFLCS and LAPCS problems. However, even for these two problems, the conflict graphs are very large
when large-scale problem instances are concerned. Therefore, we decided to investigate into techniques for
reducing the size of the conflict graphs. Note that there are basically two potential strategies for reducing the
size of a given conflict graph𝐺c: (1) making use of problem-specific information relative to the respective LCS
problems, and (2) analysing and reducing 𝐺c from the point of view of the MC problem. However, the latter
strategy has proven ineffective in preliminary computational experiments. This is because solver Lmc (the
state-of-the-art exact MC problem solver that we used Jiang et al. (2016); Li et al. (2017)) already implements
powerful graph reduction procedures which were not able to reduce 𝐺c. Therefore, we focused on reducing
the conflict graphs by making use of LCS specific information.

Our main idea for the reduction of the conflict graphs is based on having at our disposal a high-quality
primal (lower) bound value 𝑙𝑏 for the tackled problem, that is, the value of a high-quality solution. The value
of the best-known solution from the literature can be taken for this purpose, for example. Before we proceed,
the following notation is required: given a string 𝑡 and two indices 𝑙, 𝑟 ∈ {1, . . . , |𝑡 |} with 𝑙 ≤ 𝑟 , 𝑡 [𝑙, 𝑟] denotes
the substring of 𝑡 starting at position 𝑙 and ending at position 𝑟 . Now, on the basis of the primal bound 𝑙𝑏, it can
be decided for every complete path 𝑝 = 𝑣1, 𝑗1, . . . , 𝑣𝑚,𝑗𝑚 of the multi-layered graph, if the corresponding vertex
𝑣𝑝 can be removed from the conflict graph 𝐺c without loosing an optimal solution.1 This is done as follows.
First, note that the complete path under consideration splits each input string 𝑠𝑖 into two parts: 𝑠𝑖 [1, 𝑗𝑖 − 1]
(the left-hand side) and 𝑠𝑖 [𝑗𝑖 + 1, |𝑠𝑖 |] (the right-hand side). Henceforth we denote the set of left-hand sides
corresponding to a complete path 𝑝 by 𝑆L𝑝 , and the set of right-hand sides by 𝑆R𝑝 . More formally:

𝑆L𝑝 =
{
𝑠𝑖 [1, 𝑗𝑖 − 1] | 𝑖 = 1, . . . ,𝑚

}
𝑆R𝑝 =

{
𝑠𝑖 [𝑗𝑖 + 1, |𝑠𝑖 |] | 𝑖 = 1, . . . ,𝑚

}
Note that both 𝑆L𝑝 and 𝑆R𝑝 are subinstances of the original problem instance. Therefore, any upper bound
function UB() known for the problem (RFLCS, respectively LAPCS) can be used for (over)-estimating the

1Note that the conflict graph reduction will be described for a general case of 𝑛 input strings, even though we only have two input
strings in the cases of the RFLCS and LAPCS problems.

7

quality of the length of an optimal solution in 𝑆L𝑝 and 𝑆R𝑝 . Given such an upper bound function UB(), vertex
𝑣𝑝 and all corresponding edges can be deleted from the conflict graph 𝐺c iff

UB(𝑆L𝑝) + 1 + UB(𝑆R𝑝) < 𝑙𝑏 . (1)

For the following discussion, bear in mind that any upper bound for the classical LCS problem is also an
upper bound for the RFLCS and LAPCS problems. This is, because these two problems correspond to classical
LCS problems with additional constraints. In other words, the set of valid solutions of a RFLCS problem
instance, respectively a LAPCS problem instance, is a subset of the set of valid solutions of the instance if
solved as a classical LCS problem. Therefore, upper bound functions developed for the classical LCS problem
are candidates to be used for UB() in Equation (1).

Blum et al. (2009), for example, introduced an upper bound function henceforth labelled UBLCS
1 () for the

classical LCS problem (which is a tightened version of a bound originally introduced by Fraser (1995)). Given a
problem instance (𝑆, Σ), for each input string 𝑠𝑖 ∈ 𝑆 and each letter 𝑎 ∈ Σ, let |𝑠𝑖 |𝑎 be the number of occurrences
of 𝑎 in 𝑠𝑖 and let 𝑐𝑎 (𝑆) = min𝑠𝑖 ∈𝑆 |𝑠 |𝑎 . Then, UBLCS

1 () is defined as follows:

UBLCS
1 (𝑆) =

∑
𝑎∈Σ

𝑐𝑎 (𝑆)

Let 𝛿 (𝑎, 𝑆) for 𝑎 ∈ Σ evaluate to one, if letter 𝑎 appears at least once in each input string from 𝑆 , and otherwise
to zero. As each letter from Σ can mostly appear once in a valid RFLCS solution, UBLCS

1 () from above reduces
to the following upper bound function in the context of the RFLCS problem:

UBRFLCS
1 (𝑆) =

∑
𝑎∈Σ

𝛿 (𝑎, 𝑆)

Finally, when used for our purposes—that is, for obtaining an upper bound for (sub-)instances 𝑆L𝑝 and 𝑆R𝑝 in
Equation (1) in the context of an RFLCS instance—we can even exclude letter 𝑙 (𝑝) (the letter of path 𝑝) from
the sum. This results in:

UBRFLCS
1 (𝑆, 𝑝) =

∑
𝑎∈Σ\{𝑙 (𝑝) }

𝛿 (𝑎, 𝑆) .

Wang et al. (2011) proposed another upper bound function for the classical LCS problem, henceforth labelled
UB2(), which is based on dynamic programming (DP). This function is defined as follows:

UB2(𝑆) = min
𝑖=1,...,𝑚−1

LCS(𝑠𝑖 , 𝑠𝑖+1) ,

where LCS(𝑠𝑖 , 𝑠𝑖+1) refers to the length of the longest common subsquence of input strings 𝑠𝑖 and 𝑠𝑖+1. Using
the DP recursion of Wang et al. (2010) we can obtain this bound in O(𝑚) time by using an appropriate prepro-
cessing data structure known as the scoring matrix Wang et al. (2012); Inenaga and Hyyrö (2018). In particular,
note that in the context of the RFLCS and LAPCS problems, the preprocessing is done in O(𝑛2) time.

In summary, for the conflict graph reduction in the context of the RFLCS problem, UB() is defined as
min{UBRFLCS

1 (),UB2()}; and in the context of the LAPCS problem, UB() is defined as min{UBLCS
1 (),UB2()}.

4 Experimental evaluation

The aim of the computational experiments is to compare two strategies to solve LCS problems: (1) their direct
solution using a specialized state-of-the-art algorithm, and (2) their transformation to the MIS, respectively
the MC, problems and the subsequent solution by Cplex2 (in case of the MIS problem) or by different MC
solvers. In the case of the transformation to an MC problem, we make use of the following solvers:

• Lmc. This exact MC solver was introduced by Jiang et al. (2016); Li et al. (2017). It is currently one of the
best exact solvers available for the MC problem. It combines an aggressive preprocessing of the graph
with a MaxSAT solver Li and Manya (2009) in a branch-and-bound scheme.

2IBM ILOG CPLEX is an optimization software package that includes state-of-the-art exact techniques for solving integer linear
programming models, among others. It is available for free for academic purposes. For more information, we refer the interested
reader to http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html. In this work we made use of
version 12.7.

8

Instance First String Second string
RNA n narcs RNA n narcs

Real_1 Allochromatium vinosum 369 119 Haemophilus influenza 377 124
Real_2 Bacteroides thetaiotaomicron 361 121 Porphyromonas gingivalis 398 131
Real_3 Halococcus morrhuae 475 154 Haloferax volcanii 433 142
Real_4 Klebsiella pneumoniae 383 127 Escherichia coli 377 124
Real_5 Methanococcus jannaschii 252 75 Archaeoglobus fulgidus 229 67
Real_6 Methanosarcina barkeri 371 115 Pyrococcus abyssi 330 100
Real_7 Mycoplasma genitalium 384 119 Mycoplasma pneumoniae 369 112
Real_8 Saccharomyces kluveri 336 90 Schizosaccharomyces octosporus 281 71
Real_9 Serratia marcescens 378 125 Shewanella putrefaciens 354 115
Real_10 Streptomyces bikiniensis 398 135 Streptomyces lividans 405 138

Table 1: Characteristics of real instances from set Lapcs-Real. All 20 arc-annotated RNA sequences were
taken from the RNase P Database Brown (1999).

• Lscc-Bms. This is one of the best-performing heuristic algorithms for the MC problem. Wang et al.
(2016) introduced this local-search-based algorithm, whose main strengths are a configuration checking
procedure that reduces the probability of cycling during local search, and a low-complexity vertex swap
neighbourhood which is fast even on massive graphs3.

Note that both Cplex and Lscc-Bms were executed on a cluster of 12-core Intel Xeon 5670 CPUs at 2.9GHz
and at least 40GB of RAM. Lmcwas executed on a cluster with 8-core Intel Xeon E5-2680 CPUs at 2.4GHz and
with 128 GB of memory. In both cases, the memory consumption of each process was limited to 16 GB.

RFLCS benchmark instances Two sets of problem instances can be found in the related literature. The
first set, henceforth denoted by Rflcs-Set1, consists of 30 randomly generated problem instances for each
combination of the input sequence length 𝑛 ∈ {32, 64, 128, 256, 512, 1024, 2048, 4096} and the alphabet size
|Σ| ∈ {𝑛8 ,

𝑛
4 ,

3𝑛
8 ,

𝑛
2 ,

5𝑛
8 ,

3𝑛
4 ,

7𝑛
8 }. This results in a total of 1680 instances. The second set, henceforth dented by

Rflcs-Set2, consists of 30 randomly generated instances for each combination of the alphabet size |Σ| ∈ {4, 8,
16, 32, 64, 128, 256, 512} and themaximal repetition of each letter, reps ∈ {3, 4, 5, 6, 7, 8}. In total, set Rflcs-Set2
contains 1440 instances.

LAPCS benchmark instances The recent literature on the LAPCS problem considers both artificial in-
stances (benchmark set Lapcs-Arti) and real RNA instances (benchmark set Lapcs-Real). Each artificial
instance consists of two randomly generated RNA strings of length 𝑛 ∈ {100, 200, . . . , 900, 1000}. Moreover,
each input string has 𝑛arcs ∈

{
𝑛
10 ,

𝑛
5 ,

𝑛
2
}
randomly generated unique arc annotations. Set Lapcs-Arti consists

of 30 instances for each combination of 𝑛 and 𝑛arcs, which makes a total of 900 problem instances. Set Lapcs-
Real consists of 10 problem instances that are composed of arc-annotated RNA sequences downloaded from
the RNase P Database Brown (1999). Note that the alphabet size in all cases is equal to four. Table 1 sum-
marises the characteristics of these instances.

Due to the fact that the amount of reduction of the conflict graphs from Section 3 depends on the quality
of the used primal bound per instance, we used the currently best-known solution values from the literature
for all considered instances. In the case of the RFLCS problem, these values were taken from Blum and Blesa
(2018), and in the case of the LAPCS problem from Blum and Blesa (2018).

4.1 Results without conflict graph reduction

All three methods—Cplex, Lmc, and Lscc-Bms—were applied with a computation time limit of 3600 seconds
(1 hour) and a memory limit of 16GB per run to all RFLCS and LAPCS problem instances. The results are pre-
sented in numerical form in Tables 2 and 3 concerning the RFLCS problem, and in Tables 4 and 5 concerning
the LAPCS problem. The first two columns in Tables 2–4 indicate the problem instance characteristics, while
the third column provides the currently best known results from the literature. Remember, in this context,

3We downloaded the code of Lscc-Bms from http://ai.nenu.edu.cn/wangyy/Yiyuandata/LocalSearchforMWCP.htm on April
29, 2019.

9

Table 2: Experimental results for RFLCS instances Rflcs-Set1.

|Σ| 𝑛 Spec. Cplex Lmc Lscc+Bms

Tech. result 𝑡 𝑡opt #opt result 𝑡 𝑡opt #opt result 𝑡

𝑛/8

32 4.00 4.00 0.09 0.09 30 4.00 0.00 0.01 30 4.0 0.01
64 8.00 8.00 0.81 0.81 30 8.00 0.00 0.07 30 8.0 0.00
128 16.00 16.00 8.12 8.12 30 16.00 0.00 49.61 30 16.0 0.01
256 31.97 31.97 188.31 188.31 30 31.90 20.54 – – 0 31.97 0.09
512 63.27 5.17 625.34 – – 0 62.50 485.59 – – 0 63.90∗ 68.84
1024 111.57 0.03 1461.74 – – 0 112.53 818.57 – – 0 116.10∗ 1297.00
2048 182.67 – – – – – – 0 182.40 1331.53 – – 0 181.67 1394.27
4096 283.33 – – – – – – 0 281.37 1037.61 – – 0 261.37 1510.89

𝑛/4

32 7.83 7.83 0.03 0.03 30 7.83 0.00 0.00 30 7.83 0.00
64 14.67 14.67 0.29 0.29 30 14.67 0.00 0.01 30 14.67 0.00
128 25.77 25.93∗ 2.02 2.50 30 25.93∗ 0.01 0.09 30 25.93∗ 0.02
256 43.70 43.97∗ 30.92 51.17 30 43.97∗ 0.12 0.80 30 43.97∗ 0.22
512 67.90 68.50 582.53 1622.77 27 68.57∗ 75.61 185.15 30 68.57∗ 7.57
1024 103.00 0.00 240.97 – – 0 103.77 386.81 – – 0 104.87∗ 877.29
2048 154.33 0.00 1398.78 – – 0 152.87 438.52 – – 0 151.33 1485.85
4096 226.67 – – – – – – 0 223.57 780.50 – – 0 207.03 1984.69

3𝑛/8

32 8.77 8.77 0.02 0.02 30 8.77 0.00 0.00 30 8.77 0.00
64 15.53 15.53 0.10 0.10 30 15.53 0.00 0.00 30 15.53 0.00
128 24.90 24.90 1.75 1.79 30 24.90 0.00 0.03 30 24.90 0.01
256 39.97 39.97 5.25 5.90 30 39.97 0.02 0.20 30 39.97 0.13
512 59.77 59.97∗ 106.42 133.02 30 59.97∗ 0.46 1.83 30 59.97∗ 1.99
1024 90.50 90.67 2204.06 2263.32 23 90.73∗ 5.71 30.67 30 90.73∗ 145.24
2048 130.57 0.00 547.50 – – 0 129.67 233.36 105.92 1 129.13 1578.88
4096 191.37 – – – – – – 0 188.30 311.61 – – 0 179.73 1670.85

𝑛/2

32 8.87 8.87 0.01 0.01 30 8.87 0.00 0.00 30 8.87 0.00
64 14.80 14.80 0.06 0.06 30 14.80 0.00 0.00 30 14.80 0.00
128 22.93 22.93 0.76 0.78 30 22.93 0.00 0.01 30 22.93 0.00
256 35.10 35.20∗ 2.18 2.27 30 35.20∗ 0.02 0.09 30 35.20∗ 0.09
512 53.10 53.13∗ 31.82 34.03 30 53.13∗ 0.08 0.66 30 53.13∗ 0.71
1024 79.03 79.13∗ 627.90 701.13 30 79.13∗ 6.04 11.56 30 79.13∗ 30.80
2048 115.30 0.00 248.56 – – 0 115.07 432.97 598.59 19 114.87 1517.02
4096 167.47 0.00 1295.77 – – 0 165.87 390.18 – – 0 159.37 1490.48

5𝑛/8

32 8.60 8.60 0.01 0.01 30 8.60 0.00 0.00 30 8.60 0.00
64 13.30 13.30 0.03 0.03 30 13.30 0.00 0.00 30 13.30 0.00
128 21.20 21.20 0.36 0.37 30 21.20 0.00 0.01 30 21.20 0.00
256 32.53 32.53 4.21 4.36 30 32.53 0.01 0.05 30 32.53 0.04
512 47.83 47.83 13.06 13.15 30 47.83 0.04 0.33 30 47.83 0.28
1024 70.03 70.20∗ 208.55 215.63 30 70.20∗ 1.43 4.12 30 70.20∗ 8.70
2048 103.80 48.33 2306.93 3328.76 1 103.97∗ 63.19 158.21 30 103.87 936.80
4096 150.00 0.00 878.84 – – 0 148.53 302.72 1607.66 2 145.77 1423.49

3𝑛/4

32 8.17 8.17 0.00 0.00 30 8.17 0.00 0.00 30 8.17 0.00
64 12.53 12.53 0.02 0.02 30 12.53 0.00 0.00 30 12.53 0.00
128 19.70 19.70 0.17 0.18 30 19.70 0.00 0.00 30 19.70 0.00
256 29.97 29.97 2.25 2.32 30 29.97 0.00 0.03 30 29.97 0.02
512 44.53 44.57∗ 4.90 4.94 30 44.57∗ 0.03 0.19 30 44.57∗ 0.29
1024 65.07 65.20∗ 96.77 97.46 30 65.20∗ 0.75 2.11 30 65.20∗ 3.39
2048 94.53 94.67∗ 1829.86 1862.21 30 94.67∗ 4.57 18.69 30 94.63 638.75
4096 136.57 0.00 500.41 – – 0 135.73 355.77 682.50 13 133.53 1617.99

7𝑛/8

32 7.67 7.67 0.00 0.00 30 7.67 0.00 0.00 30 7.67 0.00
64 11.57 11.57 0.01 0.01 30 11.57 0.00 0.00 30 11.57 0.00
128 18.40 18.40 0.12 0.12 30 18.40 0.00 0.00 30 18.40 0.00
256 27.80 27.80 1.21 1.22 30 27.80 0.00 0.02 30 27.80 0.01
512 40.57 40.60∗ 2.93 3.01 30 40.60∗ 0.02 0.12 30 40.60∗ 0.10
1024 60.50 60.57∗ 79.74 79.76 30 60.57∗ 0.28 1.19 30 60.57∗ 3.55
2048 88.00 88.00 831.15 896.78 30 88.00 4.13 18.68 30 88.00 114.45
4096 127.20 0.00 361.39 – – 0 126.50 212.34 478.99 17 125.47 1608.56

10

Table 3: Experimental results RFLCS instances Rflcs-Set2.

|Σ| reps Spec. Cplex Lmc Lscc-Bmc

Tech. result 𝑡 𝑡opt #opt result 𝑡 𝑡opt #opt result 𝑡

4

3 3.47 3.47 0.00 0.00 30 3.47 0.00 0.00 30 3.47 0.00
4 3.77 3.77 0.00 0.00 30 3.77 0.00 0.00 30 3.77 0.00
5 3.83 3.83 0.00 0.00 30 3.83 0.00 0.00 30 3.83 0.00
6 3.90 3.90 0.00 0.00 30 3.90 0.00 0.00 30 3.90 0.00
7 3.97 3.97 0.01 0.01 30 3.97 0.00 0.00 30 3.97 0.00
8 3.97 3.97 0.01 0.01 30 3.97 0.00 0.00 30 3.97 0.00

8

3 6.23 6.23 0.00 0.00 30 6.23 0.00 0.00 30 6.23 0.00
4 6.87 6.87 0.00 0.00 30 6.87 0.00 0.00 30 6.87 0.00
5 7.40 7.40 0.02 0.02 30 7.40 0.00 0.00 30 7.40 0.00
6 7.53 7.53 0.02 0.02 30 7.53 0.00 0.00 30 7.53 0.00
7 7.70 7.70 0.06 0.06 30 7.70 0.00 0.00 30 7.70 0.00
8 7.77 7.77 0.05 0.05 30 7.77 0.00 0.00 30 7.77 0.00

16

3 9.70 9.70 0.01 0.01 30 9.70 0.00 0.00 30 9.70 0.00
4 11.57 11.57 0.03 0.03 30 11.57 0.00 0.00 30 11.57 0.00
5 12.93 12.93 0.06 0.06 30 12.93 0.00 0.00 30 12.93 0.00
6 14.00 14.00 0.15 0.16 30 14.00 0.00 0.01 30 14.00 0.00
7 14.93 14.93 0.30 0.30 30 14.93 0.00 0.02 30 14.93 0.02
8 14.80 14.80 0.37 0.38 30 14.80 0.00 0.02 30 14.80 0.00

32

3 16.13 16.13 0.08 0.08 30 16.13 0.00 0.00 30 16.13 0.00
4 19.00 19.00 0.27 0.27 30 19.00 0.00 0.01 30 19.00 0.00
5 21.63 21.63 0.83 0.85 30 21.63 0.00 0.02 30 21.63 0.01
6 23.73 23.73 1.57 1.65 30 23.73 0.00 0.04 30 23.73 0.01
7 25.53 25.57∗ 2.23 2.34 30 25.57∗ 0.02 0.10 30 25.57∗ 0.03
8 27.40 27.50∗ 4.59 4.71 30 27.50∗ 0.06 0.23 30 27.50∗ 0.07

64

3 25.43 25.43 0.88 0.91 30 25.43 0.00 0.01 30 25.43 0.00
4 30.37 30.37 2.65 2.80 30 30.37 0.01 0.05 30 30.37 0.02
5 34.87 34.93∗ 3.57 4.66 30 34.93∗ 0.02 0.13 30 34.93∗ 0.07
6 39.07 39.13∗ 13.36 17.37 30 39.13∗ 0.05 0.34 30 39.13∗ 0.18
7 43.50 43.63∗ 28.44 55.76 30 43.63∗ 0.16 0.92 30 43.63∗ 0.40
8 45.17 45.53∗ 58.39 116.58 30 45.53∗ 1.38 5.41 30 45.53∗ 0.75

128

3 36.70 36.77∗ 2.39 2.44 30 36.77∗ 0.01 0.09 30 36.77∗ 0.14
4 44.90 45.03∗ 12.95 15.22 30 45.03∗ 0.06 0.37 30 45.03∗ 0.39
5 53.23 53.43∗ 48.50 64.03 30 53.43∗ 0.15 1.08 30 53.43∗ 1.12
6 61.07 61.53∗ 183.29 300.56 30 61.53∗ 4.55 7.76 30 61.53∗ 4.42
7 67.90 68.40 749.39 1377.40 25 68.47∗ 8.25 54.19 30 68.47∗ 5.13
8 73.57 74.37 1288.16 1932.99 11 74.30 524.20 474.27 13 74.60∗ 22.68

256

3 54.97 55.03∗ 46.81 48.61 30 55.03∗ 0.08 0.69 30 55.03∗ 1.06
4 68.70 68.93∗ 247.83 268.90 30 68.93∗ 0.31 2.90 30 68.93∗ 8.53
5 81.00 81.43∗ 917.97 1182.86 30 81.43∗ 9.65 21.74 30 81.43∗ 45.01
6 93.10 73.83 2951.48 3090.98 2 93.17 239.22 418.66 17 93.53∗ 162.94
7 103.50 0.00 308.34 – – 0 103.13 132.52 499.03 3 104.40∗ 734.99
8 113.70 0.00 501.06 – – 0 113.10 298.94 – – 0 114.70∗ 1300.54

512

3 81.57 81.63∗ 524.51 536.33 30 81.63∗ 0.72 5.38 30 81.63∗ 41.71
4 100.83 78.63 2899.04 3142.25 3 101.10 157.68 230.29 29 101.13∗ 602.19
5 120.43 0.00 404.86 – – 0 118.70 539.36 851.21 5 119.60 1147.39
6 137.03 0.00 681.76 – – 0 135.50 483.24 – – 0 136.00 1894.44
7 154.57 0.00 1218.70 – – 0 152.33 784.72 – – 0 150.63 1784.08
8 172.10 – – – – – – 0 169.90 698.89 – – 0 166.47 1428.87

11

Table 4: Experimental results for LAPCS instances Lapcs-Arti.

𝑛 𝑛arcs Spec. Cplex Lmc Lscc-Bms

Tech. result 𝑡 𝑡opt #opt result 𝑡 𝑡opt #opt result 𝑡

100
10 60.17𝑎 60.20∗ 304.84 326.59 30 60.20∗ 80.25 144.93 30 60.20∗ 3.25
20 58.13𝑎 58.20∗ 341.35 485.49 30 58.20∗ 89.40 318.07 29 58.20∗ 2.87
50 51.87𝑎 52.03 826.12 1990.85 20 52.07 147.26 1112.64 21 52.10∗ 4.57

200
20 121.70𝑏 – – – – – – 0 120.27 672.79 – – 0 121.23 977.41
40 116.70𝑏 – – – – – – 0 115.87 698.50 – – 0 117.67∗ 1306.38
100 104.57𝑎 – – – – – – 0 104.30 540.59 – – 0 106.50∗ 1122.56

300
30 181.30𝑎 – – – – – – 0 178.10 781.43 – – 0 173.47 1811.81
60 174.97𝑎 – – – – – – 0 171.80 498.21 – – 0 169.57 1646.61
150 157.13𝑎 – – – – – – 0 155.93 988.86 – – 0 156.10 2010.08

400
40 242.70𝑏 – – – – – – 0 239.53 790.89 – – 0 220.67 1772.27
80 233.23𝑎 – – – – – – 0 226.97 583.45 – – 0 215.10 1617.85
200 208.77𝑎 – – – – – – 0 205.23 931.87 – – 0 199.43 1949.73

500
50 302.27𝑏 – – – – – – 0 295.90 746.95 – – 0 262.10 1490.81
100 291.23𝑎 – – – – – – 0 284.67 936.73 – – 0 256.03 1678.48
250 259.50𝑎 – – – – – – 0 255.83 1161.76 – – 0 240.17 1943.09

600
60 366.03𝑏 – – – – – – 0 – – – – – – 0 – – – –
120 350.97𝑎 – – – – – – 0 – – – – – – 0 – – – –
300 309.20𝑎 – – – – – – 0 – – – – – – 0 – – – –

700
70 418.40𝑏 – – – – – – 0 – – – – – – 0 – – – –
140 400.60𝑎 – – – – – – 0 – – – – – – 0 – – – –
350 362.74𝑎 – – – – – – 0 – – – – – – 0 – – – –

800
80 484.43𝑏 – – – – – – 0 – – – – – – 0 – – – –
160 462.60𝑏 – – – – – – 0 – – – – – – 0 – – – –
400 414.33𝑎 – – – – – – 0 – – – – – – 0 – – – –

900
90 542.07𝑏 – – – – – – 0 – – – – – – 0 – – – –
180 522.40𝑎 – – – – – – 0 – – – – – – 0 – – – –
450 463.27𝑎 – – – – – – 0 – – – – – – 0 – – – –

1000
100 605.10𝑏 – – – – – – 0 – – – – – – 0 – – – –
200 583.30𝑎 – – – – – – 0 – – – – – – 0 – – – –
500 514.80𝑏 – – – – – – 0 – – – – – – 0 – – – –

that each table row provides information for 30 problem instances of the same type. Table 5 is slightly differ-
ent. The first column provides the instance name, while the second column indicates the best-known results
from the literature. Moreover, each table row only covers one single problem instance. In the case of the
LAPCS problem, the best-known results from the literature are additionally marked either by an 𝑎, indicating
that an ILP-based heuristic has produced this result, or by a 𝑏, which indicates that the Hyb-Ea algorithm has
generated this result. In Tables 2–4, the results of Cplex and Lsm are each provided in four columns. The
first one (with heading result) contains the average solution quality obtained for the 30 problem instances.
The second column (with heading 𝑡) indicates the average computation time at which the best solution of a
run was found, while the third column (with heading 𝑡opt) provides the average computation time at which
optimality was proven. Finally, the fourth table column contains the number of instances that could be solved
to optimality. This fourth table column is not provided in Table 5, as it only deals with one instance per table
row. Furthermore, the results of Lscc-Bms are given in two columns in all cases, providing the (average) result
and the (average) computation time. Note that a value in the columns with heading result is indicated in bold
font if the value is at least as good as the best known one from the literature. Moreover, a value is marked by
an asterisk in case it corresponds to a new best-known result. Finally, results of Cplex and Lmc are marked
by a grey background if they correspond to provenly optimal results.

The following observations can be made in the case of the RFLCS problem:

• While both Lmc and Lscc-Bms are able to provide feasible solutions for all problem instances from both
sets (Rflcs-Set1 and Rflcs-Set2), Cplex suffers from a sharp phase transition when the conflict graphs

12

Table 5: Experimental results for LAPCS instances Lapcs-Real.

Inst. Spec. Cplex Lmc Lscc-Bms

Name Tech. result 𝑡 𝑡opt result 𝑡 𝑡opt result 𝑡

Real_1 268𝑏 – – – – – – 259 2691.58 – – 231 3504.69
Real_2 291𝑏 – – – – – – 283 637.94 – – 216 1088.45
Real_3 294𝑏 – – – – – – 284 104.13 – – 234 1580.28
Real_4 374𝑏 – – – – – – 374 34.59 – – 366 2148.66
Real_5 178𝑏 – – – – – – 179∗ 6.04 – – 170 2336.97
Real_6 209𝑏 – – – – – – 206 30.64 – – 197 2181.59
Real_7 330𝑏 – – – – – – 330 43.61 – – 251 1461.38
Real_8 177𝑏 – – – – – – 175 3309.91 – – 173 448.26
Real_9 302𝑏 – – – – – – 304∗ 44.36 – – 226 49.66
Real_10 361𝑎 – – – – – – 361 71.14 – – 272 496.70

become too large. Observe, for example, the case (|Σ| = 𝑛/8, 𝑛 = 256) in Table 2 in comparison to the
next larger case (|Σ| = 𝑛/8, 𝑛 = 512). While Cplex is able to solve all instances of the first case to
optimality, it only provides very short solutions in the second case.

• Concerning the comparison of the two exact solvers, we can state that Lmc (the MC solver) clearly
outperforms Cplex. Lmc is able to solve 1282 Rflcs-Set1 instances and 1237 Rflcs-Set2 instances
to optimality, while Cplex can only solve 1221 Rflcs-Set1 instance and 1181 Rflcs-Set2 instances to
optimality. Moreover, Lmc does not suffer from the above-mentioned phase transition for the remaining
instances, and it requires generally less computation time. More specifically, while Lsm requires—on
average—41.7 seconds for proving optimality (if possible) of Rflcs-Set1 instances, Cplex requires 187.2
seconds; respetively 34.07 and 127.14 seconds in the case of the Rflcs-Set2 instances.

• The heuristic MC solver Lscc-Bms is especially successful in those cases in which the exact techniques
start to fail. See, for example, cases (|Σ| = 𝑛/8, 𝑛 ∈ {512, 1024}) in Table 2 and cases (|Σ| = 256, reps ∈
{6, 7, 8}) in Table 3. Lscc-Bms can be seen as the most successful one among the techniques, providing
new best-known results in 35 cases (considering both instance sets together), while Lmc provides new
best-known results in 30 cases and Cplex in 24 cases.

All in all we can state that the idea of solving the RFLCS problem by means of the transformation to the MC
problem is very successful, even before trying to reduce the size of the conflict graphs.

Let us now turn towards the LAPCS problem. In some aspects, the observations that can be made in the
context of the artificial instances (Lapcs-Arti; Table 4) are similar to the ones made for the RFLCS problem.
Cplex suffers from a sharp phase transition. In fact, it is only able to provide solutions for the case of the
smallest problem instances (𝑛 = 100). Lmc does not suffer from this phase transition and is able to provide
feasible solutions of reasonable quality until instances with input strings of length 𝑛 = 500. Both Lmc are
Cplex are able to solve 80 problem instances to optimality. And finally, the heuristic MC solver Lscc-Bms is
again very successful in those cases in which Lmc and Cplex start to fail proving optimality (see the instances
with 𝑛 = 200). Concerning the results obtained for the real instances (Lapcs-Real; Table 5), we can state that
Lsm is, by far, the most successful algorithm. While Cplex is not able to derive any feasible solutions and
Lscc-Bms never matches the best results from the literature, Lsm matches the best results from the literature
in three cases and obtains new best-known solutions in two additional cases. Nevertheless, we can state
that the results—obtained before trying to reduce the size of the conflict graphs—are rather unsatisfactory in
the context of the LAPCS problem. The main reason for this is the increased size of the conflict graphs in
comparison to the RFLCS problem, which is due to the small alphabet size of four.

4.2 Results after conflict graph reduction

After reducing all the conflict graphs with the method described in Section 3, we first measured the amount
of reduction that was achieved. This reduction is displayed for all RFLCS and LAPCS problem instances by

13

32 64 128

256

512

1024

2048

4096

n

0

10

20

30

dr
op

pe
d

ve
rti

ce
s [

%
]

|Σ|=1/8n

32 64 128

256

512

1024

2048

4096

n

20

40

60

80

dr
op

pe
d

ve
rti

ce
s [

%
]

|Σ|=1/4n

32 64 128

256

512

1024

2048

4096

n

0

20

40

60

80

100

dr
op

pe
d

ve
rti

ce
s [

%
]

|Σ|=1/2n

32 64 128

256

512

1024

2048

4096

n

0

20

40

60

80

100

dr
op

pe
d

ve
rti

ce
s [

%
]

|Σ|=3/4n

32 64 128

256

512

1024

2048

4096

n

20

40

60

80
dr

op
pe

d
ve

rti
ce

s [
%

]

|Σ|=5/8n

32 64 128

256

512

1024

2048

4096

n

0

20

40

60

80

100

dr
op

pe
d

ve
rti

ce
s [

%
]

|Σ|=3/4n

32 64 128

256

512

1024

2048

4096

n

20

40

60

80

100

dr
op

pe
d

ve
rti

ce
s [

%
]

|Σ|=7/8n

Figure 6: Graph reduction (in %) for RFLCS instances from set Rflcs-Set1.

4 8 16 32 64 128 256 512
|Σ|

0

20

40

60

80

dr
op

pe
d

ve
rti

ce
s [

%
]

reps=3

4 8 16 32 64 128 256 512
|Σ|

0

20

40

60

80

dr
op

pe
d

ve
rti

ce
s [

%
]

reps=4

4 8 16 32 64 128 256 512
|Σ|

0

20

40

60

80

dr
op

pe
d

ve
rti

ce
s [

%
]

reps=5

4 8 16 32 64 128 256 512
|Σ|

0

20

40

60

80

dr
op

pe
d

ve
rti

ce
s [

%
]

reps=6

4 8 16 32 64 128 256 512
|Σ|

0

20

40

60

dr
op

pe
d

ve
rti

ce
s [

%
]

reps=7

4 8 16 32 64 128 256 512
|Σ|

0

10

20

30

40

50

60

dr
op

pe
d

ve
rti

ce
s [

%
]

reps=8

Figure 7: Graph reduction (in %) for RFLCS instances from set Rflcs-Set2.

14

100

200

300

400

500

600

700

800

900

1000

n

25

30

35

40

45
dr

op
pe

d
ve

rti
ce

s [
%

]
#arcs=2

100

200

300

400

500

600

700

800

900

1000

n

40

50

60

70

80

dr
op

pe
d

ve
rti

ce
s [

%
]

#arcs=5

100

200

300

400

500

600

700

800

900

1000

n

50

60

70

80

90

dr
op

pe
d

ve
rti

ce
s [

%
]

#arcs=10

Figure 8: Graph reduction (in %) for LAPCS instances from set Lapcs-Arti.

1 2 3 4 5 6 7 8 9 10
Instance number

0

20

40

60

80

100

dr
op

pe
d

ve
rti

ce
s [

%
]

Figure 9: Graph reduction (in %) for LAPCS instances from set Lapcs-Real.

means of boxplots in Figures 6–9. More specifically, the boxplots show the percentage reduction concerning
the number of vertices of the original conflict graphs. If the reduction for an instance is at 60%, for exam-
ple, this means that the reduction technique was able to remove 60% of the vertices of the original conflict
graph. In the context of the RFLCS instances, we can state that the percentage reduction tends to grow with
a growing string length and a growing alphabet size. Note that for long strings on large alphabets we were
able to achieve reduction percentages of more than 90%. Concerning the LAPCS problem, it can be observed
that the reduction percentages grow with an increasing number of arc annotations. However, they slightly
increase with a growing input string length. This is due to the small alphabet size of four. Finally, it is worth
mentioning that in the case of the real problem instances (set Lapcs-Arti; Figure 9) we were able to achieve
very high reduction percentages, sometimes well over 90%. This indicates the difference in structure between
artificial and real problem instances.

The numerical results obtained by the three considered techniques after conflict graph reduction are pro-
vided in Tables 8–11 that can be found in Appendix A. The structure of these tables is the same as the one
of Tables 2–5 which was described at the beginning of Section 4.1. However, in order to relate the two sets
of results, the values in the columns with heading result are marked in a different way. More specifically,
values marked by a preceding =-symbol are equal to the values obtained by the same technique before graph
reduction. Furthermore, values marked in italic font and by a preceding −-symbol are worse than the values
obtained by the same technique before graph reduction, and values marked in bold font and by a preceding
+-symbol are better than the corresponding values before conflict graph reduction.

In order to relate the performance of a technique before graph reduction with its performance after graph
reduction, we also computed a set of measures that are provided in Table 6 for Cplex and Lmc, and in Table 7
for Lscc-Bms. The measures regarding the exact techniques (see Table 6) are as follows.

1. Measure E-M1 refers to those instances that were solved to optimality, both concerning the original
conflict graph and the reduced conflict graph. In particular, it provides the average time saved for
finding the best solution of a run (in seconds) after reducing the respective graph.

2. Measure E-M2 is very similar, just that it refers to the average time saving for proving optimality.

15

Table 6: Differences in performance of the exact methods (Cplex and Lmc) summarized for the four different
data sets. The five measures (E-M1–E-M5) are described in the text.

Data set Cplex Lmc

E-M1 E-M2 E-M3 E-M4 E-M5 E-M1 E-M2 E-M3 E-M4 E-M5

Rflcs-Set1 144.29 172.77 257 61.29 60 9.33 32.99 84 0.24 0
Rflcs-Set2 78.90 105.19 133 82.34 30 5.58 14.90 10 0.20 0
Lapcs-Arti 330.89 526.45 30 -0.39 120 29.70 20.02 0 -0.0004 150
Lapcs-Real – – – – 7 – – 9 – – – – 5 0.0 0

Table 7: Differences in performance of the heuristic method (Lscc-Bms) summarized for the four different
data sets. The four measures (H-M1–H-M4) are described in the text.

Data set Lscc-Bms

H-M1 H-M2 H-M3 H-M4

Rflcs-Set1 77.34 296 27 0
Rflcs-Set2 39.41 114 9 0
Lapcs-Arti 176.21 280 33 30
Lapcs-Real – – 9 1 0

3. Measure E-M3 indicates the number of instances additionally solved to optimality after graph reduc-
tion.

4. Measure E-M4 indicates the average improvement in solution quality (in percent) for all those in-
stances for which feasible solutions can be found both before and after graph reduction, but for which
optimality cannot be proven.

5. Finally,measure E-M5 reports on the number of instances for which a feasible (and possibly optimal)
solution can be found after graph reduction, and for which no feasible solution could be found before
graph reduction.

In the context of the heuristic MC solver Lscc-Bms (see Table 7), measures H-M1–H-M4 can be described
as follows.

1. In all those cases in which the same result is obtained by Lscc-Bms before and after conflict graph
reduction, measure H-M1 refers to the average time saving per instance (in seconds) for achieving
this result.

2. Measure H-M2 indicates the number of instances for which the result of Lscc-Bms improves after
graph reduction.

3. Measure H-M3 refers to the number of cases in which the result gets worse.

4. Finally,measure H-M4 counts the number of instances for which Lscc-Bms can find a feasible solution
after graph reduction, while before graph reduction Lscc-Bmswas not able to find any feasible solution.

Remarks concerning the results for the RFLCS problem:

• The great beneficiary of the applied conflict graph reduction is Cplex. Cplex is now able to solve 1478
Rflcs-Set1 instances (out of 1680) and 1314 Rflcs-Set2 instances (out of 1440) to optimality, while
Lmc now solves 1366 Rflcs-Set1 instances and 1247 Rflcs-Set2 instances to optimality. Nevertheless,
Cplex still suffers from a sharp phase transition which, due to the graph reduction, has been moved to
larger problem instances. Also the time savings achieved for finding the best solutions of a run and for
proving optimality are much higher in the case of Cplex when compared to those of Lmc (see Table 6).

• The heuristic MC solver Lscc-Bms is also able to profit from the graph reduction. It provides an im-
proved result for 296 Rflcs-Set1 instances and for 114 Rflcs-Set2 instances, while worse results are
only produced in 27, respectively 9, cases. Moreover, in those cases in which Lscc-Bms obtains the same

16

result before and after graph reduction, the average time saving per instance is approx. 77 seconds for
the Rflcs-Set1 instances, and approx. 39 seconds for the Rflcs-Set2 instances.

Finally, after studying the results obtained for the LAPCS instances, the following observations can be
made:

• Concerning the set of artificial problem instances (Lapcs-Arti), it can be observed that all three tech-
niques are now able to provide solutions for some of the larger instances. Cplex, for example, can now
provide solutions for the instances with 𝑛 = 200 and for the case (𝑛 = 300, 𝑛arcs = 30), for which no
result was obtained before conflict graph reduction. However, while Lscc-Bms is able to improve its
results for many instances (see cases 𝑛 ∈ {200, . . . , 500}), Lsm is again not able to take much profit from
the graph reduction. In fact, the results of Lsm after graph reduction are sometimes even worse than
before; see case 𝑛 = 200 and 𝑛arcs ∈ {20, 40}, for example. On average, Lsm is not able to improve its
results for those instances for which a feasible solution was obtained before and after conflict graph
reduction, but for which optimality could not be proven; see measure E-H4 in Table 6. Cplex is now
able to solve 110 problem instances to optimality, while Lsm can solve 80 problem instances, the same
ones that it was able to solve before conflict graph reduction. Again, Lscc-Bms performs best when the
performance of Cplex and Lsm starts to decline (see the cases with 𝑛 = 200).

• Finally, the results—in particular those of Cplex—for the real-life instances of set Lapcs-Real are quite
pleasing. Cplex is able to solve seven out of 10 instances to optimality. In three of these cases, the best-
known result from the literature is improved. Lsm, on the other side, obtains exactly the same results
as before conflict graph reduction, with the difference that optimality can be proven now for five out
of the 10 problem instances. Lscc-Bms is again able to take profit from the graph reduction, improving
its results in 9 out of 10 cases.

5 Conclusions and Future Work

In this work we presented a way to transform longest common subsequence problems into maximum clique
problems. Moreover, we presented a technique for the reduction of the resulting graphs, based on high-quality
primal bounds. The benefits of this approach were experimentally studied in the context of two longest
common subsequence variants: (1) the repetition-free longest common subsequence (RFLCS) problem and
(2) the longest arc-preserving common subsequence (LAPCS) problem. Both problem variants are shown to
be NP-hard even for two input strings. We compared the application of Cplex for solving the maximum
independent set problem, which is the complimentary problem of the maximum clique problem, with the
application of recent heuristic and exact maximum clique solvers. The three approaches were applied both
before and after graph reduction. The best results were obtained after graph reduction, even though the impact
of graph reduction was very different for the three solvers. Summarizing, we were able to solve 2613 of the
3120 RFLCS instances to optimality. Moreover, 110 out of 900 artificially created LAPCS problem instances
were solved to optimality. In the context of the LAPCS problem, it was especially pleasing to see seven out of
10 real-life instances solved to optimality for the first time.

Concerning future work, we plan to study further techniques for graph reduction in order to be able
to apply the utilized solvers to even larger problem instances, in particular regarding the LAPCS problem.
Moreover, we plan to study additional variants of the longest common subsequence problem.

References

C. S. Iliopoulos, M. Sohel Rahman, A new efficient algorithm for computing the longest common subsequence,
Theory of Computing Systems 45 (2009) 355–371.

M. Castelli, S. Beretta, L. Vanneschi, A hybrid genetic algorithm for the repetition free longest common
subsequence problem, Operations Research Letters 41 (2013) 644–649.

D. Gusfield, Algorithms on Strings, Trees, and Sequences, Computer Science and Computational Biology,
Cambridge University Press, Cambridge, 1997.

17

T. Smith, M. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology 147
(1981) 195–197.

T. Jiang, G. Lin, B. Ma, K. Zhang, A general edit distance between RNA structures, Journal of Computational
Biology 9 (2002) 371–388.

J. B. Kruskal, An overview of sequence comparison: Time warps, string edits, and macromolecules, SIAM
review 25 (1983) 201–237.

P. Brisk, A. Kaplan, M. Sarrafzadeh, Area-efficient instruction set synthesis for reconfigurable system-on-
chip design, in: Proceedings of DAC 2004 – The 41st Design Automation Conference, IEEE press, 2004, pp.
395–400.

J. Storer, Data Compression: Methods and Theory, Computer Science Press, MD, 1988.

A. Aho, J. Hopcroft, J. Ullman, Data structures and algorithms, Addison-Wesley, Reading, MA, 1983.

D. Maier, The complexity of some problems on subsequences and supersequences, Journal of the ACM 25
(1978) 322–336.

S. S. Adi, M. D. V. Braga, C. G. Fernandes, C. E. Ferreira, F. V. Martinez, M.-F. Sagot, M. A. Stefanes, C. Tjan-
draatmadja, Y. Wakabayashi, Repetition-free longest common subsquence, Discrete Applied Mathematics
158 (2010) 1315–1324.

Y.-T. Tsai, The constrained longest common subsequence problem, Information Processing Letters 88 (2003)
173–176.

Y.-C. Chen, K.-M. Chao, On the generalized constrained longest common subsequence problems, Journal of
Combinatorial Optimization 21 (2011) 383–392.

P. Bonizzoni, G. Della Vedova, R. Dondi, Y. Pirola, Variants of constrained longest common subsequence,
Information Processing Letters 110 (2010) 877–881.

I. M. Bomze, M. Budinich, P. M. Pardalos, M. Pelillo, The maximum clique problem, in: Handbook of combi-
natorial optimization, Springer, 1999, pp. 1–74.

E. K. Lee, T. Easton, K. Gupta, Novel evolutionary models and applications to sequence alignment problems,
Annals of Operations Research 148 (2006) 167–187.

H. Jiang, C.-M. Li, F. Manyà, Combining efficient preprocessing and incremental MaxSAT reasoning for Max-
Clique in large graphs, in: Proceedings of ECAI 2016 – 22nd European Conference on Artificial Intelligence,
2016, pp. 939–947.

C.-M. Li, H. Jiang, F. Manyà, On minimization of the number of branches in branch-and-bound algorithms
for the maximum clique problem, Computers & Operations Research 84 (2017) 1–15.

Y. Wang, S. Cai, M. Yin, Two efficient local search algorithms for maximum weight clique problem., in:
Proceedings of AAAI 2016 – Conference on Artificial Intelligence, 2016, pp. 805–811.

C. Blum, P. Festa, Metaheuristics for String Problems in Bio-informatics, John Wiley & Sons, 2016.

E. K. Lee, K. Gupta, Algorithms for genomic analysis, in: C. A. Floudas, P. M. Pardalos (Eds.), Encyclopedia
of Optimization, Springer US, 2009, pp. 33–54.

P. E. Hart, N. J. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths,
IEEE transactions on Systems Science and Cybernetics 4 (1968) 100–107.

Q. Wang, M. Pan, Y. Shang, D. Korkin, A fast heuristic search algorithm for finding the longest common
subsequence of multiple strings, in: M. Fox, D. Poole (Eds.), Proceedings of AAAI 2010 – Twenty-Fourth
AAAI Conference on Artificial Intelligence, AAAI press, 2010, pp. 1287–1292.

18

M. Djukanovic, G. R. Raidl, C. Blum, Finding Longest Common Subsequences: New Hybrid A* Search Results,
Technical Report AC-TR-19-008, Algorithms and Complexity Group, TU Wien, 2019. URL: http://www.ac.
tuwien.ac.at/files/tr/ac-tr-19-008.pdf.

M. Djukanovic, G. Raidl, C. Blum, Exact and heuristic approaches for the longest common palindromic sub-
sequence problem, in: Proceedings of LION12 – 12th International Conference on Learning and Intelligent
Optimization, Lecture Notes in Computer Science, Springer, 2018, pp. 199–214. In press.

S. G. Vadlamudi, P. Gaurav, S. Aine, P. P. Chakrabarti, Anytime column search, in: Proceedings of AI2012 –
25th Australasian Joint Conference on Artificial Intelligence, Springer, 2012, pp. 254–265.

C. Blum, M. J. Blesa, A comprehensive comparison of metaheuristics for the repetition-free longest common
subsequence problem, Journal of Heuristics 24 (2018) 551–579.

P. A. Evans, Finding common subsequences with arcs and pseudoknots, in: M. Crochemore, M. Paterson
(Eds.), Proceedings of CPM 1999 – 10th Annual Symposium on Combinatorial Pattern Matching, volume
1645 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 1999a, pp. 270–280.

P. A. Evans, Algorithms and Complexity for Annotated Sequence Analysis, Ph.D. thesis, University of Victoria,
1999b.

C. Blum, M. J. Blesa, Hybrid techniques based on solving reduced problem instances for a longest common
subsequence problem, Applied Soft Computing 62 (2018) 15–28.

J. W. Brown, The ribonuclease P database, Nucleic Acids Research 27 (1999) 314–314.

S. R. Chowdhury, M. M. Hasan, S. Iqbal, M. S. Rahman, Computing a longest common palindromic subse-
quence, Fundamenta Informaticae 129 (2014) 329–340.

M. M. Hasan, A. S. M. S. Islam, M. S. Rahman, A. Sen, Palindromic subsequence automata and longest common
palindromic subsequence, Mathematics in Computer Science 11 (2017) 219–232.

S. Inenaga, H. Hyyrö, A hardness result and new algorithm for the longest common palindromic subsequence
problem, Information Processing Letters 129 (2018) 11–15.

A. Abboud, A. Backurs, V. V. Williams, Tight hardness results for lcs and other sequence similarity measures,
in: Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, IEEE, 2015, pp. 59–78.

C. Calabro, R. Impagliazzo, R. Paturi, The complexity of satisfiability of small depth circuits, in: Parameterized
and Exact Computation, Springer, 2009, pp. 75–85.

C. Blum, M. J. Blesa, M. López-Ibáñez, Beam search for the longest common subsequence problem, Computers
& Operations Research 36 (2009) 3178–3186.

C. B. Fraser, Subsequences and supersequences of strings, Ph.D. thesis, University of Glasgow, 1995.

Q. Wang, D. Korkin, Y. Shang, A fast multiple longest common subsequence (MLCS) algorithm, IEEE Trans-
actions on Knowledge and Data Engineering 23 (2011) 321–334.

Q. Wang, M. Pan, Y. Shang, D. Korkin, A fast heuristic search algorithm for finding the longest common
subsequence of multiple strings, in: Proceedings of AAAI 2010 – Conference on Artificial Intelligence,
2010, pp. 1287–1292.

L. Wang, S.-Y. Wang, Y. Xu, An effective hybrid EDA-based algorithm for solving multidimensional knapsack
problem, Expert Systems with Applications 39 (2012) 5593–5599.

C. M. Li, F. Manya, Maxsat, hard and soft constraints., in: Handbook of satisfiability, volume 185, 2009, pp.
613–631.

C. Blum, M. J. Blesa, A comprehensive comparison of metaheuristics for the repetition-free longest common
subsequence problem, Journal of Heuristics 24 (2018) 551–579.

19

A Tables showing the results after graph reduction

Table 8: Results obtained after graph reduction (RFLCS instances of Rflcs-Set1).

|Σ| 𝑛 Spec. Cplex Lmc Lscc+Bms

Tech. result 𝑡 𝑡opt #opt result 𝑡 𝑡opt #opt result 𝑡

𝑛/8

32 4.00 =4.00 0.07 0.07 30 =4.00 0.00 0.03 30 =4.0 0.00
64 8.00 =8.00 0.52 0.52 30 =8.00 0.00 0.11 30 =8.0 0.00
128 16.00 =16.00 6.10 6.10 30 =16.00 0.00 76.21 30 =16.0 0.00
256 31.97 =31.97 202.49 202.49 30 =31.90 18.82 – – 0 =31.97 0.03
512 63.27 +30.97 1889.32 – – 0 −62.40 347.07 – – 0 =63.90 69.94
1024 111.57 =0.03 1062.21 – – 0 =112.53 923.56 – – 0 +116.30∗ 1099.26
2048 182.67 – – – – – – 0 −182.37 1415.51 – – 0 +182.40 1443.72
4096 283.33 – – – – – – 0 =281.37 1114.40 – – 0 +263.83 2079.95

𝑛/4

32 7.83 =7.83 0.01 0.01 30 =7.83 0.00 0.02 30 =7.83 0.00
64 14.67 =14.67 0.08 0.08 30 =14.67 0.00 0.03 30 =14.67 0.00
128 25.77 =25.93 1.78 2.34 30 =25.93 0.01 0.12 30 =25.93 0.01
256 43.70 =43.97 9.20 19.41 30 =43.97 0.13 0.67 30 =43.97 0.12
512 67.90 +68.57 233.30 489.73 30 =68.57 95.78 104.92 29 =68.57 3.20
1024 103.00 +104.53 1169.51 1969.63 14 −103.73 487.95 – – 0 +105.00∗ 482.73
2048 154.33 +117.47 1986.41 1001.01 3 −152.73 513.24 – – 0 +153.93 1229.79
4096 226.67 +23.17 648.79 – – 0 +224.63 573.22 – – 0 +215.00 1510.06

3𝑛/8

32 8.77 =8.77 0.00 0.00 30 =8.77 0.00 0.02 30 =8.77 0.00
64 15.53 =15.53 0.03 0.03 30 =15.53 0.00 0.02 30 =15.53 0.00
128 24.90 =24.90 0.33 0.34 30 =24.90 0.00 0.04 30 =24.90 0.01
256 39.97 =39.97 0.81 0.98 30 =39.97 0.02 0.08 30 =39.97 0.06
512 59.77 =59.97 9.15 14.02 30 =59.97 0.14 0.58 30 =59.97 0.39
1024 90.50 +90.73 30.62 49.38 30 =90.73 2.93 19.30 30 =90.73 5.81
2048 130.57 +131.07∗ 323.31 369.50 28 +130.57 117.06 410.36 13 +131.00 726.79
4096 191.37 +186.27 739.49 653.72 23 +190.90 399.25 – – 0 +189.07 1441.64

𝑛/2

32 8.87 =8.87 0.00 0.00 30 =8.87 0.00 0.02 30 =8.87 0.00
64 14.80 =14.80 0.01 0.01 30 =14.80 0.00 0.02 30 =14.80 0.00
128 22.93 =22.93 0.05 0.06 30 =22.93 0.00 0.03 30 =22.93 0.00
256 35.10 =35.20 0.30 0.34 30 =35.20 0.01 0.04 30 =35.20 0.03
512 53.10 =53.13 1.41 1.78 30 =53.13 0.03 0.15 30 =53.13 0.16
1024 79.03 =79.13 4.46 5.16 30 =79.13 0.24 0.60 30 =79.13 3.37
2048 115.30 +115.70∗ 26.72 29.61 30 +115.67 116.09 350.85 28 +115.67 174.36
4096 167.47 +167.97∗ 114.74 158.87 30 +167.60 36.16 208.53 18 +167.43 664.34

5𝑛/8

32 8.60 =8.60 0.00 0.00 30 =8.60 0.00 0.02 30 =8.60 0.00
64 13.30 =13.30 0.00 0.00 30 =13.30 0.00 0.02 30 =13.30 0.00
128 21.20 =21.20 0.01 0.01 30 =21.20 0.00 0.02 30 =21.20 0.00
256 32.53 =32.53 0.08 0.09 30 =32.53 0.00 0.03 30 =32.53 0.00
512 47.83 =47.83 0.65 0.65 30 =47.83 0.02 0.06 30 =47.83 0.01
1024 70.03 =70.20 1.29 1.32 30 =70.20 0.04 0.17 30 =70.20 0.25
2048 103.80 +103.97 4.28 4.32 30 =103.97 0.49 3.18 30 +103.97 2.77
4096 150.00 +150.57∗ 50.27 50.36 30 +150.43 281.64 219.92 24 +150.40 365.03

3𝑛/4

32 8.17 =8.17 0.00 0.00 30 =8.17 0.00 0.02 30 =8.17 0.00
64 12.53 =12.53 0.00 0.00 30 =12.53 0.00 0.02 30 =12.53 0.00
128 19.70 =19.70 0.00 0.00 30 =19.70 0.00 0.02 30 =19.70 0.00
256 29.97 =29.97 0.02 0.02 30 =29.97 0.00 0.02 30 =29.97 0.00
512 44.53 =44.57 0.17 0.19 30 =44.57 0.00 0.04 30 =44.57 0.02
1024 65.07 =65.20 0.52 0.52 30 =65.20 0.02 0.09 30 =65.20 0.07
2048 94.53 =94.67 0.87 0.90 30 =94.67 0.04 0.16 30 +94.67 1.29
4096 136.57 +136.77∗ 11.63 11.80 30 +136.47 171.71 3.79 26 +136.73 26.59

7𝑛/8

32 7.67 =7.67 0.00 0.00 30 =7.67 0.00 0.02 30 =7.67 0.00
64 11.57 =11.57 0.00 0.00 30 =11.57 0.00 0.02 30 =11.57 0.00
128 18.40 =18.40 0.01 0.01 30 =18.40 0.00 0.02 30 =18.40 0.00
256 27.80 =27.80 0.01 0.01 30 =27.80 0.00 0.02 30 =27.80 0.00
512 40.57 =40.60 0.06 0.06 30 =40.60 0.00 0.02 30 =40.60 0.00
1024 60.50 =60.57 0.34 0.35 30 =60.57 0.01 0.04 30 =60.57 0.09
2048 88.00 =88.00 2.56 2.59 30 =88.00 0.05 8.89 30 =88.00 0.33
4096 127.20 +127.37∗ 2.93 2.97 30 +127.37∗ 0.15 1.50 30 +127.37∗ 2.17

20

Table 9: Results obtained after graph reduction (RFLCS instances of Rflcs-Set2).

|Σ| 𝑟𝑒𝑝𝑠 Spec. Cplex Lmc Lscc-Bms

Tech. result 𝑡 𝑡opt #opt result 𝑡 𝑡opt #opt result 𝑡

4

3 3.47 =3.47 0.00 0.00 30 =3.47 0.00 0.02 30 =3.47 0.00
4 3.77 =3.77 0.00 0.00 30 =3.77 0.00 0.02 30 =3.77 0.00
5 3.83 =3.83 0.00 0.00 30 =3.83 0.00 0.02 30 =3.83 0.00
6 3.90 =3.90 0.00 0.00 30 =3.90 0.00 0.02 30 =3.90 0.00
7 3.97 =3.97 0.00 0.00 30 =3.97 0.00 0.02 30 =3.97 0.00
8 3.97 =3.97 0.01 0.01 30 =3.97 0.00 0.02 30 =3.97 0.00

8

3 6.23 =6.23 0.00 0.00 30 =6.23 0.00 0.02 30 =6.23 0.00
4 6.87 =6.87 0.00 0.00 30 =6.87 0.00 0.02 30 =6.87 0.00
5 7.40 =7.40 0.00 0.00 30 =7.40 0.00 0.02 30 =7.40 0.00
6 7.53 =7.53 0.01 0.01 30 =7.53 0.00 0.02 30 =7.53 0.00
7 7.70 =7.70 0.02 0.02 30 =7.70 0.00 0.02 30 =7.70 0.00
8 7.77 =7.77 0.02 0.02 30 =7.77 0.00 0.02 30 =7.77 0.00

16

3 9.70 =9.70 0.00 0.00 30 =9.70 0.00 0.02 30 =9.70 0.00
4 11.57 =11.57 0.01 0.01 30 =11.57 0.00 0.02 30 =11.57 0.00
5 12.93 =12.93 0.02 0.02 30 =12.93 0.00 0.02 30 =12.93 0.00
6 14.00 =14.00 0.05 0.05 30 =14.00 0.00 0.02 30 =14.00 0.00
7 14.93 =14.93 0.10 0.10 30 =14.93 0.00 0.04 30 =14.93 0.00
8 14.80 =14.80 0.17 0.17 30 =14.80 0.00 0.05 30 =14.80 0.01

32

3 16.13 =16.13 0.01 0.01 30 =16.13 0.00 0.02 30 =16.13 0.00
4 19.00 =19.00 0.02 0.03 30 =19.00 0.00 0.02 30 =19.00 0.00
5 21.63 =21.63 0.28 0.30 30 =21.63 0.00 0.03 30 =21.63 0.01
6 23.73 =23.73 0.62 0.70 30 =23.73 0.00 0.06 30 =23.73 0.01
7 25.53 =25.57 1.79 1.93 30 =25.57 0.02 0.13 30 =25.57 0.02
8 27.40 =27.50 2.49 2.67 30 =27.50 0.07 0.29 30 =27.50 0.05

64

3 25.43 =25.43 0.02 0.02 30 =25.43 0.00 0.02 30 =25.43 0.00
4 30.37 =30.37 0.24 0.26 30 =30.37 0.00 0.03 30 =30.37 0.01
5 34.87 =34.93 1.46 2.21 30 =34.93 0.01 0.09 30 =34.93 0.04
6 39.07 =39.13 5.46 8.21 30 =39.13 0.04 0.25 30 =39.13 0.11
7 43.50 =43.63 11.06 24.01 30 =43.63 0.16 0.79 30 =43.63 0.18
8 45.17 =45.53 35.48 84.08 30 =45.53 1.69 6.06 30 =45.53 0.44

128

3 36.70 =36.77 0.18 0.18 30 =36.77 0.00 0.03 30 =36.77 0.02
4 44.90 =45.03 1.99 2.67 30 =45.03 0.02 0.11 30 =45.03 0.15
5 53.23 =53.43 7.90 10.76 30 =53.43 0.12 0.42 30 =53.43 0.30
6 61.07 =61.53 28.13 46.99 30 =61.53 4.27 6.76 30 =61.53 0.98
7 67.90 +68.47 125.08 421.63 30 =68.47 9.47 57.64 30 =68.47 1.98
8 73.57 +74.50 554.65 1321.01 18 =74.30 608.14 544.04 13 =74.60 10.65

256

3 54.97 =55.03 0.74 0.79 30 =55.03 0.02 0.06 30 =55.03 0.04
4 68.70 =68.93 5.61 6.63 30 =68.93 0.10 1.64 30 =68.93 0.79
5 81.00 =81.43 28.37 40.16 30 =81.43 3.51 7.68 30 =81.43 3.13
6 93.10 +93.60∗ 227.62 476.17 30 +93.17 124.54 309.18 17 +93.60∗ 47.19
7 103.50 +104.27 667.00 1338.10 24 −103.13 156.41 176.14 3 +104.47∗ 262.17
8 113.70 +112.07 2277.45 1367.53 1 =113.10 344.01 – – 0 +115.00∗ 1009.44

512

3 81.57 =81.63 0.52 0.54 30 =81.63 0.02 0.35 30 =81.63 0.12
4 100.83 +101.13 10.22 10.99 30 +101.10 17.70 23.64 30 =101.13 4.44
5 120.43 +121.03∗ 147.62 209.48 30 +120.03 249.84 866.25 14 +121.03∗ 226.89
6 137.03 +136.97 1335.77 771.58 11 +136.47 499.84 47.78 1 +137.80∗ 1064.07
7 154.57 +111.40 2118.90 – – 0 −152.27 823.67 – – 0 +153.33 1619.19
8 172.10 +13.97 577.60 – – 0 −169.73 620.92 – – 0 +168.70 1557.06

21

Table 10: Results for LAPCS instances of set Lapcs-Arti after graph reduction.

𝑛 𝑛arcs Spec. Cplex Lmc Lscc-Bms

Tech. result 𝑡 𝑡opt #opt result 𝑡 𝑡opt #opt result 𝑡

100
10 60.17𝑎 =60.20 6.57 8.56 30 =60.20 38.48 85.52 30 =60.20 0.46
20 58.13𝑎 =58.20 12.46 22.41 30 =58.17 15.96 361.00 29 =58.20 0.80
50 51.87𝑎 =52.03 637.48 1150.86 24 =52.07 145.51 1105.66 21 =52.10 2.48

200
20 121.70𝑏 +122.60 956.11 1072.96 22 −120.20 635.33 – – 0 +122.63∗ 671.81
40 116.70𝑏 +111.80 2475.25 1972.97 4 −115.80 627.34 – – 0 +118.40∗ 748.94
100 104.57𝑎 +0.07 302.02 – – 0 =104.30 539.94 – – 0 +106.87∗ 1048.04

300
30 181.30𝑎 +22.10 659.71 – – 0 +178.23 643.25 – – 0 +178.63 1495.86
60 174.97𝑎 – – – – – – 0 =171.80 507.46 – – 0 +172.20 1338.14
150 157.13𝑎 – – – – – – 0 +155.97 991.12 – – 0 +156.97 1410.26

400
40 242.70𝑏 – – – – – – 0 +239.73 650.89 – – 0 +230.77 1616.86
80 233.23𝑎 – – – – – – 0 =226.97 578.27 – – 0 +221.80 1657.25
200 208.77𝑎 – – – – – – 0 −205.17 705.84 – – 0 +202.27 2035.29

500
50 302.27𝑏 – – – – – – 0 −295.83 847.81 – – 0 +278.47 1819.17
100 291.23𝑎 – – – – – – 0 +284.70 891.25 – – 0 +266.70 1470.81
250 259.50𝑎 – – – – – – 0 −255.80 1116.97 – – 0 +242.57 1686.56

600
60 366.03𝑏 – – – – – – 0 +356.83 773.68 – – 0 +323.13 1598.87
120 350.97𝑎 – – – – – – 0 +341.40 987.06 – – 0 – – – –
300 309.20𝑎 – – – – – – 0 +306.63 906.20 – – 0 – – – –

700
70 418.40𝑏 – – – – – – 0 +386.93 708.66 – – 0 – – – –
140 400.60𝑎 – – – – – – 0 +40.23 169.30 – – 0 – – – –
350 362.74𝑎 – – – – – – 0 – – – – – – 0 – – – –

800
80 484.43𝑏 – – – – – – 0 – – – – – – 0 – – – –
160 462.60𝑏 – – – – – – 0 – – – – – – 0 – – – –
400 414.33𝑎 – – – – – – 0 – – – – – – 0 – – – –

900
90 542.07𝑏 – – – – – – 0 – – – – – – 0 – – – –
180 522.40𝑎 – – – – – – 0 – – – – – – 0 – – – –
450 463.27𝑎 – – – – – – 0 – – – – – – 0 – – – –

1000
100 605.10𝑏 – – – – – – 0 – – – – – – 0 – – – –
200 583.30𝑎 – – – – – – 0 – – – – – – 0 – – – –
500 514.80𝑏 – – – – – – 0 – – – – – – 0 – – – –

Table 11: Results for LAPCS instances of set Lapcs-Real after graph reduction.

Inst. Spec. Cplex Lmc Lscc-Bms

Name Tech. result 𝑡 𝑡opt result 𝑡 𝑡opt result 𝑡

Real_1 268𝑏 +273∗ 339.70 339.76 =259 2489.55 – – +272 847.60
Real_2 291𝑏 +291 21.84 21.85 =283 416.57 – – +291 903.86
Real_3 294𝑏 – – – – – – =284 49.69 – – +263 1360.83
Real_4 374𝑏 +374 0.02 0.02 =374 0.01 0.07 +374 0.00
Real_5 178𝑏 +179 4.62 4.63 =179 1.38 351.62 +179 11.32
Real_6 209𝑏 +0 2376.75 – – =206 15.19 – – +204 2441.29
Real_7 330𝑏 +330 0.05 0.05 =330 0.73 1.12 +330 758.07
Real_8 177𝑏 +1 1281.87 – – =175 2760.20 – – −172 3025.38
Real_9 302𝑏 +304 1.47 1.81 =304 16.41 54.18 +304 498.12
Real_10 361𝑎 +361 0.23 0.23 =361 1.49 10.50 +361 74.89

22

