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Abstract

Problem definition: More than one-third of US domestic flights are operated by regional
airlines. This paper focuses on optimizing medium-term schedule planning decisions for a network
of regional airlines through the joint optimization of frequency planning, timetable development,
fleet assignment, and some limited aspects of route planning, while capturing passengers’ travel
decisions through a general attraction discrete choice model. Methodology: Unlike previous
studies that focused on flight-level decision variables, our formulation uses composite variables to
model all non-stop flights between a pair of airports and their complex interdependencies, giving
rise to an extended formulation with an extremely tight continuous relaxation. We develop an orig-
inal solution approach based on column generation and a restricted master heuristic to generate
high-quality solutions. Additionally, we propose a new acceleration technique based on dynamic
programming to quickly generate promising columns. When combined with implicit dual smooth-
ing, symmetry-breaking techniques, and subproblem aging, this acceleration approach allows us to
solve large-scale real-world instances to near-optimality in less than 3 hours. Results: Through
an extensive computational analysis for some of the largest regional airline networks in the US, we
demonstrate the effectiveness of our overall modeling and computational framework. Our approach
can generate daily profit improvements of up to $0.4 million compared to the actual schedule of the
airline. Implications: We identify the main operational drivers of profit improvement. Further-
more, numerous sensitivity analyses confirm that our results are robust to relaxing key modeling
assumptions. Ultimately, our detailed experiments show that the proposed approach provides
near-optimal solutions to real-world problem instances within practically reasonable runtimes.

Keywords: timetable development; fleet assignment; passenger choice; column generation;
regional airlines.

1 Introduction
Flight schedules have a significant effect on the profitability and competitiveness of airlines. The
schedule planning process consists of a sequence of steps, including fleet planning, route selection,
frequency planning, timetable design, fleet assignment, aircraft routing, crew scheduling, and tail as-
signment (Petropoulos et al. 2024). Fleet planning involves decisions related to buying, selling, and
leasing aircraft, a multi-year process that significantly affects the airlines’ future schedules. Despite
its importance, it is very difficult to optimize fleet planning, given the difficulty in generating accurate
long-term demand forecasts and the long lead times between aircraft orders and deliveries. Very few
quantitative studies focus on optimizing airline fleet planning. In comparison, medium-term strategic
decisions related to route selection, frequency planning, timetable design, and fleet assignment benefit
from access to more accurate information on demand projections and market competition. Finally, air-
craft routing, crew scheduling, and tail assignment decisions are made on a shorter time horizon. This
paper focuses on optimizing medium-term strategic decisions related to frequency planning, timetable
design, and fleet assignment, as well as limited changes to the route selection process.
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Airlines follow various business models, resulting in different network planning, scheduling, and pric-
ing decisions. Examples of such differences include hub-and-spoke versus point-to-point carriers and
network legacy versus low-cost carriers. A large number of airlines are classified as regional airlines.
They are responsible for operating between 30% and 40% of US domestic flights. Although regional
airlines can vary considerably in their strategy and operations, they often share several similarities.
They typically offer short-haul flights using smaller aircraft, leverage hub-and-spoke networks, and
help passengers connect with flights operated by their mainline partner carriers. Mainline partners
are usually long-haul network carriers that operate their flights using larger aircraft. Interestingly,
some regional airlines can be among the largest carriers in a country or region when measured in
terms of the number of flight operations. For example, in 2022, four of the ten largest US airlines
by flight operations were regionals. Regional airlines often sell tickets jointly with mainline partners,
and mainline carriers have a considerable say in the scheduling and operating decisions made by their
regional partners. In terms of ownership, some regional airlines are wholly owned subsidiaries of the
mainline carriers and serve to extend the network of only one mainline partner. Other regional airlines
may serve multiple mainline carriers, but when they do so, they almost always serve a unique mainline
partner out of each of its hub airports.

This research tackles the joint optimization problem of frequency planning, timetable development,
and fleet assignment — as well as some limited aspects of route planning — for a regional airline
network. It assumes that the mainline partner’s schedule is fixed. The contributions of this paper are
as follows.

• We propose a new integrated optimization formulation for medium-term planning decisions
(route selection, frequency planning, timetabling, and fleet assignment) that incorporates a re-
alistic model of passenger choice. Unlike previous medium-term planning studies, which used
flight-level decision variables, our formulation uses a single composite variable to model all non-
stop flights between a pair of airports and their complex interdependencies. In contrast, the
composite variables used in the existing airline scheduling literature have been used to model
the itineraries of individual aircraft, crew, and passengers, primarily to solve short-term schedul-
ing problems.

• Composite variables give rise to an extended formulation enjoying an extremely tight continuous
relaxation. We exploit this formulation to obtain near-optimal solutions via column generation
and a restricted master heuristic. Additionally, we propose a new acceleration approach based
on Dynamic Programming (DP) to quickly generate promising columns. When combined with
implicit dual smoothing, symmetry-breaking techniques, and subproblem aging, this acceleration
approach allows us to solve large-scale real-world instances in up to 3 hours of runtime.

• Through an extensive computational analysis based on ablation studies, we demonstrate the
effectiveness of our overall modeling and computational framework. We identify the main op-
erational drivers of the profit improvements enabled by our approach. Furthermore, numerous
sensitivity analyses confirm that our results are robust to relaxing key modeling assumptions.
Ultimately, our detailed experiments show that the proposed approach provides near-optimal
solutions to real-world problem instances within practically reasonable runtimes.

2 Literature Review
Given the focus of this paper on frequency planning, timetable development, and fleet assignment, we
now provide an overview of the prominent studies in each of these areas.

2.1 Fleet Assignment and Passenger Flow Modeling
Fleet assignment involves assigning aircraft types to individual flights to minimize assignment costs
while satisfying many constraints, including aircraft-flight compatibility, flight cover, flow balance, and
aircraft availability. Fleet assignment is among the oldest and most studied problems in the literature
on airline operations research. Early studies such as (Abara 1989) and (Hane et al. 1995) assumed
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passenger demand to be leg-based, exogenously known, and deterministic. Subsequent studies began
to relax these assumptions, progressively leading to increasingly more realistic representations of real-
world passenger demand patterns. Barnhart, Kniker, et al. (2002) and Barnhart, Farahat, et al. (2009)
relaxed the leg-based demand assumption and explicitly modeled passenger demand at an itinerary
level. Barnhart, Kniker, et al. (2002) proposed an itinerary-based fleet assignment model (IFAM) that
captures network effects using a passenger mix model (PMM). A PMM simplifies passenger flows by
assuming that airlines can control them to maximize revenue, leading to an optimistic fare revenue
approximation. Barnhart, Farahat, et al. (2009) developed a subnetwork decomposition approach to
solve an itinerary-based fleet assignment model.

Some studies focused on problems that are extensions or complementary to solving the fleet assignment
problem. Jacobs et al. (2008) combined a leg-based fleet assignment model with network revenue
management considerations and solved the resulting formulation using Benders’ decomposition. Ahuja
et al. (2007) tackled fleet assignment with a particular emphasis on capturing the revenue premium for
the through connections and solved it using a very large-scale neighborhood search algorithm. Soumis
and Nagurney (1993) and Dumas and Soumis (2008) focused on modeling the flow of passengers in a
network for a given schedule and fleet assignment while accounting for stochastic demand and passenger
spill-recapture behaviors. Sherali, Bish, et al. (2005) developed and analyzed a model to adjust fleet
assignment in response to improved demand forecasts available closer to the day of departure. Sherali
and Zhu (2008) developed a two-stage stochastic programming model to allow itinerary-based fleet
assignment to benefit from improved passenger demand forecasts by deciding fleet family assignments
in the first stage and delaying intra-fleet adjustment decisions to the second stage.

Wang et al. 2014 introduced choice-based demand for more accurate capture of demand substitution
effects in a fleet assignment model, replacing more traditional spill-recapture modeling methods. They
also suggested potential model extensions to incorporate optional flights, optional markets, departure
time selection, and block time selection.

2.2 Incremental Timetable Development
After the early successes in developing and solving fleet assignment models, some researchers started
incorporating incremental flight timetabling decisions into the fleet assignment models. These In-
cremental Timetabling and Fleet Assignment Models (IT-FAM) focused on up to two sets of incre-
mental timetable development ideas: retiming existing flights within departure time windows and
adding/removing optional flights to/from a schedule.

Desaulniers et al. (1997) combined aircraft routing decisions into an IT-FAM based on departure time
windows and solved the resulting models via an exact solution method combining column generation
(to generate aircraft routes) and Dantzig-Wolfe decomposition with branch-and-bound. Lohatepanont
and Barnhart (2004) combined a passenger mix model into an IT-FAM based on optional flights and
solved it using a column generation (to generate passenger itineraries) and row generation method
combined with branch-and-bound. S. Yan et al. (2008) developed an IT-FAM using departure time
windows while accounting for stochastic passenger demand and solved it using arc-based and route-
based heuristic methods. Sherali, Bae, et al. (2010) also developed an IT-FAM based on optional
flights and solved it using Benders’ decomposition. Sohoni et al. (2011) developed a stochastic integer
program for flight retiming to improve the robustness of an existing schedule and for a given fleet
assignment and solved it via an exact cut generation scheme. Jiang and Barnhart (2013) also developed
a robust scheduling model that utilizes IT-FAM based on departure time windows and solved it using a
column generation approach to generate passenger itineraries. Sherali, Bae, et al. (2013a) and Sherali,
Bae, et al. (2013b) developed an IT-FAM with both optional flights and departure time windows and
solved it using Benders’ decomposition.

More recent IT-FAMs have started incorporating choice-based passenger demand into the incremen-
tal timetabling process. This often requires resorting to heuristics rather than exact methods. For
example, Abdelghany et al. (2017) designed a bilevel optimization model using an IT-FAM based
on departure time windows while incorporating passenger itinerary choice models and developed a
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metaheuristic to solve this model. Xu, Wandelt, et al. (2021) also developed an IT-FAM for robust
scheduling with optional flights and departure time windows and solved it using a variable neighbor-
hood search heuristic. Finally, C. Yan et al. (2022) recently proposed an IT-FAM based on optional
flights under choice-based passenger demand. They extended the subnetworks-based decomposition
method by Barnhart, Farahat, et al. (2009) to become the first study to develop an exact solution
approach for an IT-FAM under choice-based demand.

2.3 Frequency Planning and Comprehensive Timetabling
Several studies in the last few years have proposed optimization models and solution approaches that
make more substantial changes to flight schedules than those made in the incremental timetabling and
fleet assignment studies presented in Section 2.2. These more recent studies develop comprehensive
timetabling and fleet assignment models (CT-FAMs) as well as frequency planning models. These more
substantial scheduling decisions often require researchers to consider the implications of choice-based
demand and the effects of the services offered by competing transportation providers.

Vaze and Barnhart (2012) proposed a frequency planning model under airport slot constraints and
solved it with an exact approach using dynamic programming. Pita et al. (2013) and Cadarso et al.
(2017) both approximated choice-based demand using piecewise linear functions for each period of
the day (for example, morning, afternoon, or evening) for a slot-constrained version of CT-FAM. The
resulting problem sizes were small enough to be solved directly using an off-the-shelf mixed-integer
optimization solver to near-optimality. Wei et al. (2020) embedded a discrete choice passenger de-
mand model at the itinerary level, through sales-based linear programming, into a full-scale CT-FAM
applied to a major US carrier. They developed a multiphase heuristic to obtain good solutions within
two hours of runtime, substantially outperforming off-the-shelf solvers that produced inferior solutions
even after 48 hours of runtime. Kiarashrad et al. (2021) combined CT-FAM with ticket pricing de-
cisions and solved the resulting nonlinear optimization model using a tabu-search metaheuristic. Xu,
Adler, et al. (2023) also combined CT-FAM with ticket pricing and solved it using a large neighbor-
hood search heuristic, which was shown to outperform exact methods based on branch-and-bound and
branch-and-price. Santini 2025 proposed a joint optimization model for route planning, frequency plan-
ning, timetabling, and fleet assignment that focuses on regional airlines’ operations at slot-constrained
airports, but ignores passengers’ travel choices. They specifically underscored the need to take passen-
ger travel decisions into account, using a discrete choice model, to plan medium-term regional airline
schedules. In this paper, we address this need.

In summary, all CT-FAM studies either simplify the choice-based demand models or rely on heuristic
solution approaches. In contrast, we develop an exact method to solve CT-FAM while incorporating
frequency planning and some limited aspects of route selection. Existing scheduling studies that
use column generation (CG) do so to generate either aircraft routes or passenger itineraries (e.g.,
Desaulniers et al. 1997; Kenan et al. 2018; Lohatepanont and Barnhart 2004; Xu, Adler, et al. 2023).
In contrast, we use CG to generate segment schedules, which is a new application of CG to airline
scheduling. Finally, we accelerate the solution approach by developing and solving a new passenger
mix model (PMM) using dynamic programming to speed up the pricing subproblem.

3 Problem Statement and Assumptions
In this section, we describe the research problem and specify our key assumptions.

Regional Airline Perspective: We take the perspective of a regional airline (or a group of regional
airlines) supporting a single mainline carrier. For some regional airlines, different subnetworks may
support different mainlines. For example, Republic Airlines (YX) has contracts with American Airlines
(AA), Delta Airways (DL), and United Airlines (UA). However, the schedules of the regional flights
that support each mainline are developed independently. On the other hand, a mainline carrier can
coordinate the scheduling of multiple regionals supporting its own network. Therefore, this paper
focuses on scheduling regional airline flights (operated by one or more regionals) that support a single
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Figure 1: A part of the network for regional airline Mesa (solid) and mainline carrier United Airlines
(dashed).

Hub-to-hub Hub-to-NR Hub-to-spoke NR-to-hub NR-to-spoke Spoke-to-hub Spoke-to-NR Spoke-to-spoke MktSz

Segments → 1 2 > 2 2 > 2 1 2 > 2 2 > 2 2 > 2 1 2 > 2 2 > 2 1 2 > 2

9E DL 1.2 0.3 0.1 0.4 0.4 19.7 1.4 0.1 0.3 0.4 20.4 1.1 19.5 1.5 0.1 20.4 1.2 7.1 4.2 0.1 2.8M
C5 UA 0.0 0.2 0.1 0.2 0.4 17.3 1.7 0.1 0.1 0.3 27.4 1.9 17.4 1.8 0.1 27.2 2.1 0.0 1.7 0.1 642.7k
G7 UA 0.1 0.6 0.0 0.6 1.4 23.2 0.4 0.0 0.4 1.0 22.9 1.1 23.4 0.4 0.1 21.8 1.4 0.0 1.4 0.0 389.7k
MQ AA 0.0 0.2 0.0 0.3 0.3 14.9 2.0 0.1 0.3 0.3 24.2 1.4 14.6 2.0 0.1 24.3 1.6 8.5 4.7 0.1 2.8M
OH AA 0.1 0.3 0.0 0.4 0.4 17.5 1.5 0.2 0.3 0.4 24.6 1.2 17.3 1.5 0.2 24.7 1.4 0.2 7.9 0.0 2.9M
OO AA 0.0 0.1 0.0 0.3 0.2 12.2 1.9 0.1 0.3 0.2 25.6 1.9 12.1 2.1 0.1 26.6 2.1 10.9 3.2 0.1 1.7M
OO AS 6.0 0.5 0.0 0.7 0.1 22.2 0.7 0.0 0.5 0.1 3.9 0.3 21.9 1.3 0.0 4.8 0.7 35.4 0.9 0.0 971.7k
OO DL 0.2 0.2 0.1 0.5 0.4 19.9 3.6 0.1 0.1 0.4 19.5 2.1 20.0 3.6 0.2 19.8 2.4 0.1 6.1 0.5 3.2M
OO UA 0.1 0.4 0.1 0.2 0.2 20.9 3.4 0.1 0.1 0.2 20.4 1.0 20.4 3.6 0.2 21.1 1.5 0.0 5.9 0.3 3M
PT AA 0.0 0.2 0.0 0.2 0.5 8.5 0.7 0.1 0.1 0.5 33.9 2.6 8.6 0.7 0.1 33.4 2.7 5.0 2.5 0.0 815.2k
YV AA 0.0 0.1 0.0 0.3 0.3 16.0 0.6 0.1 0.2 0.3 30.1 1.4 15.9 0.6 0.1 29.6 1.7 0.0 2.7 0.0 903.3k
YV UA 0.1 0.3 0.0 0.6 0.4 28.1 0.3 0.0 0.3 0.2 18.3 0.7 28.0 0.4 0.0 18.0 1.0 0.5 2.7 0.0 752.4k
YX AA 0.8 0.2 0.0 1.3 0.4 26.1 1.2 0.0 1.1 0.4 11.7 1.1 26.0 1.4 0.1 12.0 1.0 11.2 4.0 0.0 1.9M
YX DL 6.3 0.0 0.0 2.3 0.5 28.9 0.6 0.0 2.5 0.4 8.0 0.6 28.8 0.8 0.0 7.9 0.6 10.6 1.2 0.0 1.2M
YX UA 0.0 0.2 0.0 0.5 0.5 30.5 0.2 0.0 0.2 0.3 14.5 0.7 29.5 0.2 0.0 13.9 0.9 5.2 2.7 0.0 1.1M
ZW UA 0.0 0.0 0.0 0.2 0.2 12.8 0.5 0.0 0.1 0.2 29.8 1.8 12.5 0.5 0.0 29.7 2.2 6.1 3.2 0.0 574.1k

Table 1: Market sizes for the main regional airlines operating in the United States.
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mainline. For example, both YX and Mesa Airlines (YV) have flights that support UA. So, UA is
interested in coordinating the schedules of YX and YV.

Flow of Flights and Passengers: Each passenger intends to travel from an origin airport to a
destination airport. Every ordered pair of origin and destination airports defines a market. An
itinerary is a sequence of flights that a passenger takes during a trip. A path is the sequence of
airports visited by a passenger during a trip. A segment is any ordered pair of airports between which
non-stop flights could be operated.

Airports: The regional airline operates at two types of airports: hubs and spokes. Hubs are airports
where the regional airline has a base (for aircraft and crew) and sees a high traffic volume. The
hubs also allow passengers to transfer between regional and mainline flights. The spokes are all other
airports where a regional airline flies. They are typically smaller and have less traffic. The mainline
carrier operates at the hubs of the regional airline but usually not at its spokes. Moreover, mainline
carriers also operate at other airports where the regional does not operate; we call these “non-regional
airports”. Figure 1 shows an example portion of a network for the regional airline Mesa Airlines and
its mainline partner carrier, United Airlines. Circles represent spokes, squares are hubs, and triangles
are non-regional (NR) airports. Solid lines represent segments operated by the regional airline, while
dashed lines correspond to segments operated by the mainline. Of these, the black dashed lines connect
hubs and NR airports, while the lightly colored dashed lines correspond to hub-to-hub or NR-to-NR
segments.

Markets: We consider eight market types that are relevant for regional airlines: hub-to-hub, spoke-to-
spoke, hub-to-NR (and vice versa), hub-to-spoke (and vice versa), and spoke-to-NR (and vice versa).
We do not consider NR-to-NR markets because these are very rarely served by regional flights. Table 1
shows the relative sizes of each type of market for the major regional airlines in the US, using data from
the Bureau of Transportation Statistics (2023c). The first column is the regional airline’s IATA code,
while the second column is the code of the corresponding mainline. The last column, MktSz, reports
the total number of passengers carried in the reference period (quarter 2 of 2022). All other columns
report the percentage of passengers belonging to a given market type for each regional airline. For
each market, the data are further decomposed by the number of segments that make up the passenger
itinerary. For example, in the network depicted in Figure 1, a non-stop passenger from MAF to
IAH would count toward the spoke-to-hub markets and one segment. A passenger flying from MAF
to ORD with a connection at IAH would count toward the spoke-to-NR markets and two segments.
The highlighted rows indicate the regional-mainline combinations that we use in our computational
experiments (see Sections 6 and 7).

Paths: We assume that for each market, all passengers who use at least one regional flight follow the
same path. For example, the MAF-ORD market can be served via the MAF-IAH-ORD and MAF-
IAH-MSY-IAD-ORD paths, but the former is much more popular. In fact, typically, only one path
for each market captures almost all of the demand served by the regional airline. For example, when
considering mainline UA and regionals YV and YX, 91.29% of all passengers take the most popular
path; when aggregating on a market-by-market basis, the median percentage of passengers taking the
most popular path is 100%. In our model, we assume that all passengers use the most popular path
for each market.

Passenger Connection Times: We assume that all passengers in the same market follow the same
itinerary as long as they meet the following two conditions: a) their itinerary includes one regional
flight and one mainline flight, and b) they take the same regional flight. For example, passengers on
the MAF-IAH-ORD path who take a regional MAF-IAH flight with Mesa Airlines that departs at
8 am and arrives at 10 am will all continue their journey on the same mainline flight. If there are
mainline flights departing at 10:50 am, 11:50 am, and 12:50 pm on segment IAH-ORD, then all MAF-
IAH-ORD passengers arriving on the Mesa flight to IAH at 10 am will take the 10:50 am departure
to ORD, assuming that the 50-minute connection time is more desirable for passengers than the 110-
or 170-minute connection times.
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Number of Connections: We assume that all itineraries have at most two segments. Indeed, Table 1
shows that only a tiny fraction of passengers use itineraries with more than two segments. When
considering the mainline UA and the regionals YV and YX, only 2.36% passengers use itineraries of
length > 2. The two-segment itineraries can be of two types: both segments served by regionals or one
segment served by a regional airline and the other by the mainline. In our model, we directly include
all markets served by two-segment itineraries that involve one regional segment and one mainline
segment. On the other hand, we split every market served by a two-segment itinerary involving two
regional segments into two separate markets whose demand is the same as that of the original market.
Each of these two markets is modeled to be served by a single-segment itinerary. For mainline UA
and regionals YV and YX, only 1.33% of the passengers use an itinerary with more than one segment
operated by regional airlines. In Section 7.4, we show that this simplification, which is helpful for
modeling purposes, only minimally affects the computational results.

4 Models
In this section, we develop an optimization algorithm for the combined problem of Frequency planning,
Timetable development, and Fleet Assignment (FTFA) for a network of one or more regional airlines
that support a single mainline. Given the interdependence of the decisions made on different segments
of the network, the overall optimization problem must be modeled and solved jointly rather than
solving a separate optimization problem for each segment. However, to motivate our mathematical
and algorithmic developments, in Section 4.1, we start by formulating the FTFA on a single segment
served by a regional airline. In Section 4.2, we formulate the network-wide FTFA. Then, in Section 5,
we present a column generation algorithm to solve the network-wide FTFA using the single-segment
FTFA.

4.1 Single-Segment Scheduling
Consider a pair of airports, i and j, connected by regional flights, i.e., (i, j) ∈ L in the notation of
Table 2. We start by tackling the problem of devising an optimal schedule between these two airports,
given the available fleet. The output of this process will be a segment schedule S, i.e., a sequence of
pairs (t, a) in which t is the departure time of a flight from i to j using an aircraft of type a. This
segment schedule can be used to determine the cost of operating flights between i and j. However,
to evaluate the revenue earned by selling tickets to passengers that use segment (i, j) as part of their
itinerary, we need a model that calculates passenger flow given the segment schedule and the fares of
available tickets. Therefore, a scheduling model aiming to maximize profits, i.e., revenue minus costs,
must integrate a passenger allocation model.

Determining how many passengers will take each offered flight is challenging because this number
depends on passenger preferences, the entire offering of flights between i and j, and on other segments
that are parts of itineraries containing segment (i, j), the available capacity on each flight, and the
available outside options. Following Wei et al. (2020), we use a General Attraction Model (GAM) to
incorporate endogenous passenger choices and determine the resulting passenger flows. In the absence
of a tight seating capacity constraint, under the GAM, the number of passengers of market q ∈ Qij

taking a flight from i to j with a flight departure time s is:

Mq ·
α̌ijqt

βq +
∑

t∈T ∗
ij
αijqt

, (1)

where T ∗
ij is the set of offered departure times on segment (i, j) and Mq is the size of market q.

α̌ijqt, ωijqt and αijqt are, respectively, the attractiveness, the shadow attractiveness, and the adjusted
attractiveness of the itinerary containing a flight in segment (i, j) with flight departure time in period
t to passengers in the market q. Note that αijqt = α̌ijqt − ωijqt. β̌q is the attractiveness of the outside
option. The outside option represents the aggregation of all alternatives available to a passenger that
do not include flying with the regional airline under consideration. This may include traveling with
flights from other airlines, traveling using other modes of transportation, or not traveling. Finally,
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Set Description

D Set of airports served by the regional airline.
L Set of segments served by the regional airline.
T Set of periods in the planning horizon.
Tij ⊆ T Valid departure periods for flights in segment (i, j) ∈ L.
T ′ = T ∪ {|T |+ 1} Set of time periods in the extended time horizon; it includes the planning horizon and the period

after that.
Q Set of all markets included in the model.
Qij ⊆ Q Set of markets whose itineraries include segment (i, j) ∈ L.
A Set of aircraft types.
Aij ⊆ A Aircraft types that can operate segment (i, j) ∈ L.
T a
ij ⊆ Tij Valid departure periods for flights in (i, j) ∈ L operated by an aircraft of type a ∈ Aij .
Da ⊆ D Set of airports where an aircraft of type a ∈ A can operate.
La ⊆ L Set of segments that can be operated by an aircraft of type a ∈ A.
Aijt ⊆ Aij Aircraft types that can operate a flight in segment (i, j) ∈ L departing in period t ∈ Tij .
Ai ⊆ A Set of aircraft types that can operate at airport i ∈ D.
S Set of all feasible schedules.
Sij ⊆ S Set of all feasible schedules for segment (i, j) ∈ L.
Sa
ijt ⊆ Sij Schedules for segment (i, j) ∈ L, containing a flight departing in period t ∈ Tij and operated by

an aircraft of type a ∈ Aijt.
Ŝa
ijt ⊆ Sij Schedules for segment (i, j) ∈ L, containing a flight operated by an aircraft of type a ∈ Aij whose

sum of arrival time and turn-around time corresponds to period t ∈ T a
ij .

Parameter Description

Mq ∈ Z+ Size of market q ∈ Q.
α̌ijqt ≥ 0 Attractiveness of an itinerary containing a flight in segment (i, j) ∈ L departing at time t ∈ Tij

for passengers of market q ∈ Qij .
ωijqt ≥ 0 Shadow attractiveness of an itinerary containing a flight in segment (i, j) ∈ L departing at time

t ∈ Tij for passengers of market q ∈ Qij .
β̌q ≥ 0 Attractiveness of the outside option for passengers of market q ∈ Q.
αijqt ≥ 0 Adjusted attractiveness of an itinerary containing a flight in segment (i, j) ∈ L departing at time

t ∈ Tij for passengers of market q ∈ Qij .
βq ≥ 0 Adjusted attractiveness of the outside option for passengers of market q ∈ Q.
fijqt ≥ 0 Fare for a passenger in market q ∈ Qij flying on segment (i, j) ∈ L at time t ∈ Tij .
caijt ≥ 0 Cost of operating a flight in segment (i, j) ∈ L departing at time t ∈ Tij using an aircraft of type

a ∈ Aijt.
taij ∈ Z+ Number of periods needed for an aircraft of type a ∈ Aij to be ready for the next flight, after it

flies on segment (i, j) ∈ L; it includes the flight time from i to j and the turn-around time at j.
Na ∈ Z+ Fleet size for aircraft type a ∈ A.
P a ≥ 0 Seating capacity of aircraft type a ∈ A.
σij ∈ Z+ Minimum number of periods between two consecutive departures for segment (i, j) ∈ L.
ϕij ∈ Z+ Minimum frequency for segment (i, j) ∈ L.
ψij ∈ Z+ Maximum frequency for segment (i, j) ∈ L.
δaijt ∈ {0, 1} Takes value 1 iff an aircraft of type a ∈ Aij can operate a flight at time t ∈ T a

ij on segment
(i, j) ∈ L when performing incremental retiming.

Cij ∈ [0, 1] Maximum load factor for segment (i, j) ∈ L.
pS ∈ R Profit earned when operating the flights in schedule S ∈ S.

Variable Description

zaijt ∈ {0, 1} 1 iff a flight departing during period t ∈ T a
ij is operated by an aircraft of type a ∈ Aij .

xijqt ≥ 0 Number of passengers of market q ∈ Qij taking a flight at time t ∈ Tij .
xq0 ≥ 0 Number of passengers of market q ∈ Qij taking the outside option.
yS ∈ {0, 1} 1 iff the we operate the segment schedule S ∈ S.
wa

it ∈ Z+ Number of aircraft of type a ∈ A available at airport i ∈ Da at the beginning of period t ∈ T ′.

Table 2: Sets and parameters used to formulate the single-segment (Section 4.1) and network-wide
(Section 4.2) scheduling problems.
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βq = β̌q +
∑

t∈T ∗
ij
ωijqt is the adjusted attractiveness of the outside option. The concept of shadow

attractiveness was introduced by Gallego et al. (2015) to overcome the Independence of Irrelevant
Alternatives property of the multinomial logit model. In the GAM, the attractiveness of the itinerary
α̌ijqt is the exponential of a linear function of the itinerary attributes, such as the fare, time of day,
travel time, connection time, inconvenience, etc. (Barnhart, Fearing, et al. 2014). We refer the reader
to Gallego et al. (2015) for more details on the GAM and to Wei et al. (2020) on the adjusted
attractiveness of an airline itinerary. When there is enough seating capacity, expression (1) equals the
number of passengers carried, and when the seating capacity constraint is tight, expression (1) serves
as an upper limit to the number of passengers carried.

A mathematical formulation for the single-segment scheduling problem under a GAM passenger al-
location model for segment (i, j) uses variables zaijt ∈ {0, 1} (a ∈ Aij , t ∈ T a

ij), xijqt ≥ 0 (q ∈ Qij ,
t ∈ Tij) and xq0 ≥ 0 (q ∈ Qij). Variable zaijt equals one if and only if the schedule includes a flight
operated by an aircraft of type a departing during period t. Variables xijqt and xq0 are the number
of passengers in market q taking, respectively, a regional airline flight at time t or the outside option.
The formulation reads as follows.

max
∑
a∈Aij

∑
t∈Ta

ij

∑
q∈Qij

fijqtxijqt

− caijtz
a
ijt

 (2a)

s.t.
∑
t∈Ta

ij

s−taij−taji<t≤s

zaijt ≤ Na ∀a ∈ Aij , ∀s ∈ T (2b)

βq · xijqt ≤ αijqt · xq0 ∀t ∈ Tij , ∀q ∈ Qij (2c)

xq0 +
∑
t∈Tij

xijqt =Mq ∀q ∈ Qij (2d)

∑
q∈Qij

xijqt ≤
∑

a∈Aijt

P azaijt ∀t ∈ Tij (2e)

zaijt ∈ {0, 1} ∀a ∈ Aij , ∀t ∈ T a
ij (2f)

xijqt ≥ 0 ∀q ∈ Qij , ∀t ∈ Tij (2g)
xq0 ≥ 0 ∀q ∈ Qij . (2h)

The objective function (2a) maximizes the schedule’s profit. Constraints (2b) ensure that the segment
schedule does not use more aircraft than available in any time window of size taij + taji. The time
window’s size reflects that the quickest way for an aircraft flying from i to j to be ready to fly again
from i is, upon arriving at j, to turn around and fly back to i immediately. Constraints (2c) define the
demand for each flight to be proportional to its attractiveness. Constraints (2d) make sure that the
sum of the number of passengers taking the various alternatives (including the outside option) equals
the total passenger demand in the market. Constraints (2e) ensure that the offered number of seats
is enough to carry all passengers taking each flight.

Constraints (2c)–(2e), first introduced by Gallego et al. (2015), allow incorporating the nonlinear
GAM through a small family of linear inequalities. This is commonly known as the Sales-Based
Linear Program (SBLP) reformulation of the discrete choice models that belong to the GAM family.
This approach, first applied to airline scheduling by Wang et al. (2014), allows us to model the single-
segment scheduling problem as a compact mixed-integer program (MIP), compared to techniques that
used an exponential number of constraints (Méndez-Díaz et al. 2014) or conic integer programming
(Sen et al. 2017).

4.1.1 Single-Segment Model Extensions.

In the following, we describe possible modeling extensions that capture further real-life constraints in
the single-segment scheduling model. The corresponding new parameters are also reported in Table 2.
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• Padding between consecutive flights. Marketing and operational considerations often sug-
gest that consecutive flights on the same segment should not be scheduled to depart too close to
each other. Our model can take this requirement into account through the following constraint.∑

a∈Aijt

zaijt +
∑
a∈Aij

∑
t′∈Ta

ij

t≤t′<t+σij

zaijt′ ≤ 1 ∀t ∈ Tij . (3)

• Minimum and maximum number of flights. A planner can impose hard limits on the
minimum and maximum number of flights on a segment, adding the following constraint.

ϕij ≤
∑
a∈Aij

∑
t∈Ta

ij

zaijt ≤ ψij (4)

If ϕij = ψij and both values are equal to the number of flights in segment (i, j) in the current
airline schedule, the planner forbids frequency changes and only makes fleet assignment and
retiming decisions.

• Incremental flight retiming. The planner can decide to allow only incremental retiming of
the currently operated schedule. For example, they might allow flight departure times to change
by no more than 30 minutes compared to this schedule. In our model, this can be achieved by
forcing variables zaijt to take the value zero if departure times t fall outside the allowed ranges.

zaijt ≤ δaijt ∀a ∈ Aij , ∀t ∈ T a
ij .

• Maximum load factor. Flight load factors are influenced by many decisions, especially related
to revenue management, that are outside the scope of our model. The decision maker can specify
a maximum load factor for each segment by adding the following constraint to ensure that our
model is not too optimistic in assigning passengers to flights.∑

t∈Tij

∑
q∈Qij

xijqt ≤ Cij

∑
t∈Tij

∑
a∈Aijt

P azaijt. (5)

• Aircraft-Type-Dependent Attractiveness and Fares. The attractiveness of an airline
itinerary to a passenger can sometimes be influenced by the types of aircraft used to operate its
flights. Moreover, an airline might consider charging different fares for the same itinerary as a
function of the aircraft type. Such situations can be modeled by defining new fare parameters
faijqt to replace fijqt, new attractiveness parameters αa

ijqt to replace αijqt, and new passenger allo-
cation decision variables xaijqt to replace xijqt, each with an additional index a ∈ Aij . Moreover,
the objective function (2a) becomes:

max
∑
a∈Aij

∑
t∈Ta

ij

((∑
q∈Qij

faijqtx
a
ijqt

)
− caijtz

a
ijt

)
.

Finally, the following constraints replace (2c)–(2e):

βqx
a
ijqt ≤ αa

ijqtxq0 ∀a ∈ Aij , ∀t ∈ T a
ij , ∀q ∈ Qij

xq0 +
∑
a∈Aij

∑
t∈Ta

ij

xaijqt =Mq ∀q ∈ Qij

∑
q∈Qij

xaijqt ≤ P azaijt ∀a ∈ Aij , ∀t ∈ T a
ij .
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4.2 Network-Wide Scheduling
The network-wide schedule optimization problem for a regional airline combines individual single-
segment problems (such as those defined in Section 4.1) and links them through fleet size and aircraft
balance constraints. In this section, we propose an extended MIP formulation for network-wide sched-
ule optimization.

Denote by Sij the set of all feasible segment schedules for a given segment (i, j) ∈ L, and by S the
set of all feasible segment schedules. We introduce two sets of decision variables using the notation
presented in Table 2. First, the variables yS ∈ {0, 1} take the value one if and only if the regional
airline decides to operate the segment schedule S ∈ S. Second, the variables wa

it ∈ Z+ represent the
number of aircraft of type a ∈ A that are available at the airport i ∈ Da at the beginning of the period
t ∈ T ′. The formulation reads as follows.

max
∑
S∈S

pSyS (6a)

s.t.
∑
S∈Sij

yS = 1 ∀(i, j) ∈ L (6b)

∑
i∈Da

wa
i1 ≤ Na ∀a ∈ A (6c)

wa
i,t+1 = wa

it −
∑

j : (i,j)∈La

∑
S∈Sa

ijt

yS +
∑

j : (j,i)∈La

∑
S∈Ŝa

jit

yS ∀i ∈ D, ∀a ∈ Ai, ∀t ∈ T (6d)

wa
i1 = wa

i,|T |+1 ∀i ∈ D, ∀a ∈ Ai (6e)
yS ∈ {0, 1} ∀S ∈ S (6f)
wa
it ∈ Z+ ∀a ∈ A, ∀i ∈ Da, ∀t ∈ T ′. (6g)

The objective function (6a) maximizes the total profit from the chosen segment schedules. Constraints
(6b) ensure that exactly one segment schedule is selected for each segment operated by the regional
airline. Constraints (6c) ensure that no more aircraft of each type are used than are available. Con-
straints (6d) link the variables y and w that impose flow conservation at each airport in each period
and for each aircraft type. Constraints (6e) ensure that the aircraft are correctly positioned at the end
of the planning horizon to ensure that the same schedule can be repeated. Remark that for a given
segment (i, j), the number of variables yS ∈ Sij is exponential in the number of periods and aircraft
types. Furthermore, in the worst case, the number of feasible solutions of (6a)–(6g) is exponential in
the number of segments.

The schedule for a segment (i, j) that appears in an optimal network-wide solution is not necessarily
optimal for the single-segment problem and vice versa. Therefore, one cannot directly use the single-
segment model to build the set S required to optimally solve the network-level model. Enumerating
all feasible schedules would be prohibitively expensive, due to the size of the set. Moreover, most
feasible schedules are not attractive from a commercial point of view. These observations suggest that
an appropriate solution method for the network-wide problem should use the single-segment model
to identify promising schedules. At the same time, information from the network-wide model should
be used at the single-segment level to ensure that the resulting segment schedules work well when
used jointly. To achieve this goal, in Section 5, we propose a column generation algorithm that uses
dual information from the continuous relaxation of (6a)–(6g) to generate promising schedules using a
variation of the single-segment model (2a)–(2h).

In summary, formulation (6a)–(6g) is challenging to solve due to the exponentially many variables
y in each segment. However, as demonstrated in Section 6, this formulation enjoys an especially
tight continuous relaxation. Furthermore, we develop an exact column generation procedure and a
novel acceleration technique, presented in Section 5, that efficiently solve the continuous relaxation.
Ultimately, a tight continuous relaxation and an efficient column generation procedure together yield
high-quality solutions in short runtime budgets (of less than three hours) for planning problems at the
scale of real-world airline networks.
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4.2.1 Network-Wide Model Extensions.

In Section 4.1.1, we presented extensions of the single-segment scheduling model that take into ac-
count additional real-world complexities and planning requirements. We now present extensions to
the network-wide model that can be used to capture additional network-level requirements. See Ap-
pendix A for a detailed overview of each extension, where we describe the eventual new constraint(s)
needed and how they affect the dual structure of formulation (6a)–(6g).

• Route selection. Relaxing the equality constraint (6b) into a less-than-or-equal-to (≤) con-
straint, one can incorporate route selection decisions. The resulting model can decide not to
assign any schedule to some segments, which corresponds to not operating the segments.

• Airport slot restrictions. Many airports limit the number of flight operations that an airline
can have at that airport during each period to the number of slots assigned to that airline. Our
model allows limiting the number of flights departing from or arriving at each airport during
some or all periods to account for such slot constraints.

• Mainline capacity. Passengers on two-segment itineraries can take the regional flight only if
they can get a seat on the mainline flight. Given the list of mainline flights with the respective
capacities that are expected to be available to regional passengers, we can impose the requirement
that the chosen regional flights must allow for a feasible continuation of the itinerary on the
mainline carrier’s network.

• Average aircraft utilization. Several factors not captured endogenously by our model (e.g.,
planned maintenance of the aircraft) can affect aircraft utilization. To ensure that the results
correspond to real-life conditions, we allow the average utilization of each fleet type to be capped.

5 Column Generation Algorithm
In this section, we develop a column generation algorithm to solve the network-wide schedule opti-
mization problem presented in Section 4.2. The variables yS are the columns that we generate in our
column generation algorithm. In particular, our algorithm uses dual information from the continuous
relaxation of (6a)–(6g) to generate promising segment schedules using a variation of the single-segment
model (2a)–(2h). Denote the continuous relaxation of formulation (6a)–(6g) as the Master Problem
[MP]. Denote with λ(6b)

ij ∈ R and λ(6d)
iat ∈ R respectively the dual variables associated with constraints

(6b) and (6d) in [MP]. Given a segment (i, j), the reduced cost of a schedule S ∈ Sij is

p̄ijS := pS − λ
(6b)
ij +

∑
(t,a)∈S

(
λ

(6d)
j,a,t+taij

− λ
(6d)
iat

)
. (7)

Let x̄ijqtS be the number of passengers of market q taking the flight in segment schedule S ∈ Sij

departing in period t. Using the notation of the single-segment problem, the profit associated with
schedule S is

pS =
∑

(t,a)∈S

∑
q∈Qij

fijqtx̄ijqtS

− caijt

 . (8)

We denote the following quantities with f̄ijqt and c̄aijt.

f̄ijqt = fijqt, c̄aijt = caijt −
(
λ

(6d)
j,a,t+taij

− λ
(6d)
iat

)
. (9)

Note that f and f̄ are identical as defined in (9), but this is not necessarily the case when using the
model extensions presented in Section 4.2.1. Appendix A explains how to amend the definitions of
f̄ijqt and c̄aijt for each considered extension. With this notation, we can write the reduced cost of S in
the following way:

p̄ijS =
∑

(t,a)∈S

∑
q∈Qij

f̄ijqtx̄ijqtS

− c̄aijt

− λ
(6b)
ij . (10)
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Comparing (10) with the objective function (2a) of the single-segment problem, we note that we can
obtain the schedule S ∈ Sij with the highest reduced cost by solving problem (2a)–(2h) with the
following changes: replace fijqt with f̄ijqt, replace caijt with c̄aijt, and add the constant term −λ(6b)

ij to
the objective function. After these changes, the objective function becomes

max
∑
a∈Aij

∑
t∈Ta

ij

∑
q∈Qij

f̄ijqtxijqt

− c̄aijtz
a
ijt

− λ
(6b)
ij . (2a′)

The single-segment problem, after changing the objection function to (2a′), becomes the pricing sub-
problem for a column generation algorithm based on [MP]. The algorithm is initialized by solving
a restricted [MP] with a single dummy column yS0 . This dummy column has coefficient one in the
inequalities (6b), does not appear in (6d), and has a large negative objective coefficient. Adding the
dummy column ensures that [MP] is always feasible. If yS0 > 0 in the optimal solution to [MP], then
the problem is infeasible.

A new segment schedule can improve the objective function of [MP] if its reduced cost is strictly positive.
Therefore, in each iteration of the algorithm, we solve one pricing subproblem for each segment and
add to [MP] all the y variables associated with positive-reduced-cost segment schedules. We note that
each pricing subproblem can produce multiple positive-reduced-cost columns; to this end, we instruct
the MIP solver used to optimize the subproblem to keep a list of all visited feasible solutions, and we
add all schedules with positive reduced cost to [MP]. When all subproblems prove that no positive-
reduced-cost segment schedule exists (i.e., all optimal solutions to the single-segment problems have
a non-positive objective value), the incumbent solution to the restricted [MP] is optimal for the [MP].
At that point, we re-solve the restricted [MP] but with integrality constraints (6f) and (6g) reinstated.
In other words, we solve (6a)–(6g) only using the generated columns. The procedure presented in this
section has been called a reduced master heuristic or a price-and-branch algorithm (Desrosiers and
Lübbecke 2011; Joncour et al. 2010).

5.1 Heuristic Column Generation
In principle, there is no need to solve the restricted [MP] to optimality, and any feasible solution
with positive reduced cost, when added to the column pool, can improve the objective function of the
restricted [MP]. However, special care is needed when the solution to the subproblem is not optimal.
For any given segment (i, j) ∈ L and period t ∈ Tij , for the SBLP reformulation to work correctly,
either (2e) is tight, or all constraints (2c) are tight, or both. This condition always holds for optimal
solutions to the pricing subproblem. However, in a suboptimal solution, this condition might be
violated for some t ∈ Tij . Consider such a suboptimal solution where, for the given (i, j) ∈ L and
t ∈ Tij , the variables take the values xijqt = x̃ijqt and xq0 = x̃q0 ∀q ∈ Qij . Then it is possible to set
some of the variables xijqt to a value higher than x̃ijqt and, correspondingly, set some of the variables
xq0 to a value lower than x̃q0 while still satisfying constraints (2c)–(2e). The resulting new solution
would have a better objective value. Therefore, if we used the suboptimal solution to build a segment
schedule S ∈ S as a new column in the restricted [MP], its objective coefficient pS could be wrong
because it is calculated using a passenger number that does not follow the GAM.

To avoid such erroneous objective coefficients in the restricted [MP], we must ensure that for any
segment schedule defined by variables zaijt, the remaining variables (namely, xq0 and especially xijqt)
maximize the objective function of the pricing subproblem across all solutions with that segment
schedule. To compute pS with GAM-consistent passenger allocation, one can fix the variables zaijt
and re-solve (2a′),(2b)–(2h) to optimality (we call this procedure “z-fixing”). This transition from a
feasible solution that does not follow the GAM to one that does, by definition, cannot decrease the
reduced cost.

In terms of the overall implementation of column generation, this issue is linked to the classical
question of whether to add single or multiple columns at each pricing iteration. In most cases, adding
multiple columns improves the convergence of the column generation algorithm and the quality of the
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reduced master heuristic solution. However, adding more than one column does not usually involve any
additional computation. However, in our case, each potentially suboptimal column requires running
the z-fixing procedure.

This led to three different pricing strategies that we experimented with. As the first strategy, we solve
the pricing subproblem, and we instruct the MIP solver to stop as soon as it finds the first positive-
reduced-cost solution. We add that single column to the restricted [MP], potentially after running the
z-fixing procedure in case the pricing solution is suboptimal. The second strategy involves solving the
pricing subproblem to optimality. In this case, the corresponding solution is guaranteed to follow the
GAM and no z-fixing is required. As the third strategy, we solve the pricing subproblem to optimality
and inspect all the integer solutions encountered by the MIP solver. We run a z-fixing procedure
for each suboptimal integer solution and add all positive-reduced-cost integer solutions to the column
pool. We conducted a preliminary experiment to determine the most effective strategy and the results
showed that the third strategy outperforms the others. This is because the z-fixing procedure is quick
and does not significantly impact the algorithm’s overall time while still enriching the column pool.
Therefore, all the results in this paper follow the third strategy.

5.2 Approximating an Upper Bound on the Reduced Cost
We describe how to derive an upper bound on the reduced cost of a column by solving a relaxation
of the pricing subproblem using Dynamic Programming (DP). This procedure can result in two cases.
On the one hand, if the upper bound is negative, then no positive-reduced-cost columns exist. On
the other hand, while producing the bound, the procedure can build a segment schedule that can be
added to the column pool of the reduced [MP]. Computational experiments show that the DP usually
produces high-quality columns and helps to improve the overall convergence of the column generation
algorithm.

To apply DP, we first aggregate all the markets whose itineraries include segment (i, j) ∈ L and,
therefore, the aggregate market size is given by Mij =

∑
q∈Qij

Mq. To overestimate the reduced cost,
we assume that in any given period t ∈ Tij , all passengers have the highest fare across all markets
q ∈ Qij , given by f̄ijt = maxq∈Qij

{
f̄ijqt

}
. We also relax the assumption of GAM-following market

shares. Instead, we assume that the passengers are allocated across different flights in a segment
schedule in a way that maximizes its reduced cost. In other words, we assume that the airline can
decide how many passengers to carry on each flight in the segment schedule while still satisfying the
aircraft capacity constraints for all individual flights and respecting the aggregate market size limit.
Finally, we disregard the constraints (2b) and, if applicable, the constraints (4). This is consistent
with obtaining an overestimation of the reduced cost of a segment schedule. However, we note that
constraints (2b) are unlikely to be active anyway because the fleet size is usually much larger than the
number of aircraft needed to operate a profitable single-day schedule on a single segment. We define a
“relaxed segment schedule” (RSS) as a segment schedule that satisfies all constraints other than (2b)
and (4). We define the “relaxed reduced cost” (RRC) of an RSS as its reduced cost calculated under
these modifications.

Denote by θ(t,M) the highest RRC across all RSS whose first flight does not depart before t ∈ T
when the aggregate market size is M ∈ Z+. Then θ(1,Mij) — the highest RRC across all RSS —
constitutes an upper bound on the maximum reduced cost across all segment schedules. We compute
θ(1,Mij) using DP.

Recall that Tij is the set of valid flight departure times for flights in segment (i, j). We denote with
v(t) ∈ Tij the first valid departure period that is not before t ∈ T :

v(t) = min{s ∈ Tij | s ≥ t}.

Then, the Bellman equation of our DP algorithm is as follows:

θ(t,M) = max

θ
(
v(t+ 1),M

)
,

max
a∈Aijt

max
ξ∈{1,...,min{M,Pa}}

{
f̄ijtξ − c̄aijt + θ

(
v(t+ σij),M − ξ

)} . (11)
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The top line of (11) refers to the case where no flight is scheduled at time t. The bottom line defines the
maximum RRC achievable when operating a flight departing at time t using the best possible aircraft
type a and carrying the best possible number of passengers ξ. This RRC is the sum of two components:
the first one, from the flight departing at time t, is f̄ijtξ − c̄aijt; the second one, θ

(
v(t+ σij)

)
,M − ξ),

is the best possible RRC achieved by flights departing at time t + σij or later and carrying at most
M − ξ passengers. We can set σij = 1 if the constraints (3) are not used.

We note that, in recursion (11), the first argument to function θ always strictly increases. Therefore,
to initialize the algorithm, we provide θ values for all t values greater than the last valid departure
period:

θ(t,M) = −λ(6b)
ij ∀t ∈ T, t > max{s | s ∈ Tij}, ∀M ∈ {0, . . . ,Mij}.

Value −λ(6b)
ij appears as a constant in the pricing subproblem’s objective function (2a′).

The table for the DP defined above has a size proportional to |T | ·Mij . However, changing the number
of passengers carried by one does not significantly impact the total reduced cost of a segment schedule.
As a result, a one-passenger resolution is often unnecessary to obtain an accurate approximation of
the reduced cost of a segment schedule. We propose to reduce the size of the DP table by dividing the
interval {0, . . . ,Mij} into buckets of size B; therefore, we only consider values M if they are multiples
of B or if M = P a. However, we remark that the RRC computed using this approximation is no
longer guaranteed to be an upper bound on the maximum reduced cost of a segment schedule for all
B > 1.

The output of the DP algorithm is an RSS S and its approximate RRC θ(1,Mij). To determine
whether S is feasible and, if so, what its exact reduced cost is, we solve the model (2a′),(2b)–(2h)
fixing variables zat to value one if (t, a) ∈ S or to zero otherwise. When the resulting segment schedule
is feasible and has a positive actual reduced cost, we add the corresponding column to the pool.
Otherwise, we must solve (2a)–(2h) to determine whether any positive-reduced-cost columns exist.

5.3 Acceleration Strategies
We present three additional strategies to speed up the column generation algorithm.

5.3.1 Dual Stabilization.

We counteract the tendency of column generation algorithms towards dual variable oscillations and
tailing-off (see, e.g., Vanderbeck and Wolsey 1996) by using the dual barrier algorithm to solve [MP].
When using this algorithm, the optimal dual solution is more likely to lie midface rather than at a
vertex. This property smooths the dual values used in the subproblems (Vanderbeck 2005). To obtain
a midface dual optimum when one exists, we disable the crossover procedure (Bixby and Saltzman
1994) of the barrier algorithm, which would otherwise postprocess the midface solution and return a
dual vertex. We also tried to use techniques that perform explicit dual smoothing — in particular,
we implemented the method of Pessoa et al. (2018) — but we did not get any further computational
gains.

5.3.2 Selecting Which Subproblems to Solve (Subproblem Aging).

After a few dozen column generation iterations, most subproblems do not return any positive-reduced-
cost solutions for many iterations and, eventually, many of them never will. We define cold subproblems
as those that do not generate positive-reduced-cost columns in a given iteration. Other subproblems
are defined as hot. When, in some iteration, more than half of the subproblems are cold, we enter
a shortcut mode. In shortcut mode, we solve the subproblems in decreasing order of the number of
columns they produced during the previous iteration. We stop solving subproblems as soon as one
fails to produce positive-reduced-cost columns after at least one such column was produced during
the current iteration. At that point, we solve [MP] again and move to the next column generation
iteration. The main idea behind this strategy is to attempt to solve hot subproblems only and resort
to cold ones at the end of the algorithm to prove that no more positive-reduced-cost columns exist.
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Instance Hubs Spokes Segments Flights Markets Aircraft types Aircraft
YV 2 28 64 90 230 2 38
YX 2 30 70 128 206 2 48
OO 5 124 416 784 2810 3 260

YV + YX 4 44 134 218 454 3 86
YV + OO 6 145 518 874 2819 4 298
YX + OO 6 146 488 932 2721 4 308

YV + YX + OO 7 149 534 1002 3312 5 346

Table 3: Key features of the considered instances.

Base No Barrier No SP Aging No Noise No DP
Instance Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s) Gap % Time (s)
YV 0.11 52.80 0.09 4602.45 0.11 277.76 0.10 1042.75 0.10 703.75
YX 0.20 884.05 0.20 1506.19 0.20 1696.42 0.20 2541.12 0.20 1883.55
OO1 0.00 10800.00 0.00 10800.00 0.01 10800.00 — 10800.00 0.00 10800.00

YV + YX 0.17 1115.75 0.14 1742.86 0.19 1666.04 0.14 8481.55 0.13 6051.81
YV + OO2 0.08 10800.00 — 10800.00 0.11 10800.00 — 10800.00 — 10800.00
YX + OO3 0.12 10800.00 — 10800.00 — 10800.00 — 10800.00 — 10800.00

YV + YX + OO4 0.09 10800.00 — 10800.00 — 10800.00 — 10800.00 — 10800.00

Table 4: Ablation study results. Column Generation runtimes: 15h7m; 215h39m; 35h38m; 411h9m.

5.3.3 Breaking Symmetry in the Subproblems.

When solving the pricing subproblem for a segment (i, j) ∈ L, the objective function coefficients of
variables x and z depend on passenger fares fijqt, operating costs caijt, and the dual values. Although
the fares and operating costs could vary between periods t, in practice, some of them could be identical.
For example, operating a flight at 10 am might cost the same as at 10:15 am. The duals are also likely
to take only a few different values, and most of them take value zero because they correspond to
non-binding primal constraints. Indeed, in our experiments, we observed that the pricing subproblem
is affected by symmetry. For example, operating a flight at 8:00 am might yield the same reduced
cost as operating it at 8:15 am, 8:30 am, etc. To break this symmetry, we add a negligible amount of
noise to all fares fijqt; more precisely, we add a Gaussian noise with mean zero and standard deviation
10−3 ·fijqt. Computational experiments confirmed that instances that only differ in whether or not the
noise was added to the fares produce primal and dual bounds that are indistinguishable for practical
purposes.

6 Computational Results
In this section, we present the results of our computational experiments to evaluate the impact of
the main algorithmic design choices. We consider seven instances obtained using real-world data for
the three largest regionals supporting United Airlines: Mesa Airlines (YV), Republic Airways (YX),
and SkyWest Airlines (OO). This combination of mainline carrier and regionals gives rise to one
of the largest instances that can be built from publicly available data. We build one instance for
each possible combination of one, two, and three regional airlines. Table 3 reports the main network
characteristics of each instance: the number of hub and spoke airports, the number of segments
operated, the number of flights flown, the number of markets served, and the number of individual
aircraft and aircraft types used. This data was obtained from the Bureau of Transportation Statistics
(2023a), Bureau of Transportation Statistics (2023b), and Bureau of Transportation Statistics (2023c)
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Hub YV YX OO YV+YX YV+OO YX+OO YV+YX+OO

Figure 2: Hubs and Spokes included in the instances.

for June 29, 2022 (Wednesday). The largest joint instance (VY + YX + OO) involves operations
at 156 airports throughout the continental US, with more than 3,000 markets (that is, more than
3,000 unique origin-destination pairs between which passengers want to travel), and optimizes a fleet
of almost 350 aircraft. When creating instances combining multiple regionals, the listed numbers
of flights and aircraft in the combined instance are always simple sums of the corresponding values
for the individual regionals. However, other characteristics, namely hubs, spokes, segments, markets,
and aircraft types, sometimes overlap, resulting in the combined characteristics being different from
the sum of the parts. Figure 2 depicts the geographical distribution of hubs and spokes included in
the instances. It shows that our instances cover almost all parts of the continental US. Appendix D
provides more details on our setup of the case study and data preprocessing steps.

The tested algorithmic design choices are:

• Barrier. Using the dual barrier algorithm when solving [MP] to increase the likelihood that the
optimal dual solution returned by the solver lies midface, as explained in Section 5.3.1.

• SP Aging. Cutting short some column generation iterations when the likelihood of producing
new positive-reduced-cost columns later in the same iteration is low, as explained in Section 5.3.2.

• Noise. Adding a tiny amount of noise to fares fijqs to break the symmetry in the subproblem,
as explained in Section 5.3.3.

• DP. Using the Dynamic Programming algorithm introduced in Section 5.2 and solving MIP
(2a)–(2h) only if the DP algorithm does not produce any positive-reduced-cost column.

Table 4 shows the results of an ablation study comparing five configurations. In the “Base” config-
uration, all algorithmic improvements are active. In the other four configurations, we disable one
improvement at a time to evaluate how much the corresponding algorithm’s performance differs from
the Base configuration. We ran all experiments on a cluster with Intel Xeon CPUs running at 2.6GHz.
The algorithms were coded in C++, and we used Gurobi 9.0.0 as the Linear and Integer Programming
solver with a time limit of three hours (unless explicitly stated otherwise). For the DP algorithm, we
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used a bucket size of B = 10.

In the four instances that involved OO, the column generation algorithm did not terminate within
the time limit. In these cases, we ran the final MIP (which solves almost instantaneously) with the
columns generated before the three-hour timeout. However, we could not always obtain a feasible
MIP solution. The dashes in Table 4 represent cases in which the columns generated in the three-hour
limit produced an infeasible MIP.

All gaps are computed relative to the optimal solution of [MP]. When such a solution was not available
within the three-hour time limit, we ran the column generation algorithm until [MP] was solved
optimally. We remark that, under a hard time budget constraint, an upper bound on the cost of the
optinal [MP] solution can be obtained as explained in Appendix B.

The impact of our algorithmic improvements is twofold. In smaller instances (which do not involve
OO), they cause a large reduction in computational times, up to 87× compared to “No Barrier”, 5×
compared to “No SP Aging”, 20× compared to “No Noise”, and 13× compared to “No DP”. The
greatest improvements are for YV, while the improvements are moderate (1.5×–7.6×) for YX and
YV + YX. All configurations show extremely small gaps (≤ 0.20%) that demonstrate the strength of
our extended formulation.

In larger instances, the column generation algorithm without the algorithmic improvements is often
unable to obtain even a feasible solution within the three-hour time limit. For example, the “Base”
configuration is the only one producing a feasible integer solution in the YX + OO and YV + YX +
OO instances. The reason is that its more efficient column generation procedure allows us to complete
more pricing rounds, thus generating more columns and enabling the MIP solver to build a feasible
solution. The “Base” configuration not only obtains feasible solutions to all four hard instances within
the three-hour time limit, but the solutions are also not more than 0.12% away from the optimum
in all cases. In summary, our algorithmic improvements provide a 1.5× to 87× runtime speedup
for smaller instances and produce near-optimal solutions for larger instances for which the algorithm
without the improvements is often unable to find even a feasible solution.

7 Practical Insights
In this section, we quantify the impact of our modeling and algorithmic approach on key business
metrics of an airline network (Section 7.1). We also identify the main operational drivers of improve-
ment in Section 7.2. In Section 7.3, we demonstrate the value of comprehensive schedule planning
compared to more incremental approaches. Sections 7.4 and 7.5 assess the robustness of our numerical
results and our main qualitative findings to our two key assumptions: those about regional-regional
split markets and minimum connection times. All experiments in this section and in Appendix E
are performed using the YV, YX, and YV + YX instances. Furthermore, we indirectly capture the
effects of demand uncertainty by imposing a hard upper limit of 93% on the maximum number of
seats sold in each segment, setting the appropriate value of Cij in constraints (5). This is a reasonable
value because, across the 772 combinations of segments and carriers, for the segments operated by
the YV and YX carriers in 2022, with at least one flight per day, only 46 had an average load factor
greater than 93%. Still, in Appendix E, we further assess the impact of demand uncertainty and
revenue management practices on our key financial results and the continued relevance of our main
operational insights.

7.1 Value of Optimization
Table 5 presents the effects of our modeling and algorithmic approach on key financial metrics (that
is, total revenue, total cost, and total profit) relative to the real-world schedules of the respective
airlines. The first row, named “Status Quo”, shows these financial metrics obtained by running our
single-segment scheduling model to optimality for each segment using the actual schedules of Mesa
(YV), Republic (YX), or both (YV + YX). Specifically, we fix variables zaijt = z̄aijt, where z̄aijt refers to
the actual schedules of the respective airlines, solve model (2a)–(2h) to optimality, and then sum the
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objective function (2a) across all segments in the network to get the total profit. Moreover, the cross-
segment sums of each of the two individual terms in (2a), namely,

∑
a∈Aij

∑
t∈Ta

ij

∑
q∈Qij

fijqtxijqt and∑
a∈Aij

∑
t∈Ta

ij
caijtz

a
ijt, give the total revenue and total cost, respectively, as presented in Table 5. Here,

we need not run the network-wide model because fixing the schedule allows us to decouple segment-
specific models from each other. The remaining rows (Freq ±n) of the table show the results obtained
by our column generation algorithm while allowing the segment frequency to be different from that of
the actual real-world schedules by at most n on each segment while ensuring that the flight frequency
never goes below a threshold m on any segment. Using the notation introduced in Section 4.1.1, we
set parameters ϕ and ψ as follows:

ϕij =
( ∑
a∈Aij

∑
t∈Ta

ij

z̄aijt
)
+ n and ψij = max

{( ∑
a∈Aij

∑
t∈Ta

ij

z̄aijt
)
− n,m

}

where n = 0, 1, 2 and m = 0, 1. We note that the case with n = 0 fixes frequencies and thus only allows
retiming and fleet assignment decisions while setting n = 1, 2 allows frequency planning decisions to
be captured in the model. Using m = 1 ensures that the frequencies remain positive, while using
m = 0 allows us to remove some segments from the schedule if the corresponding frequency is zero.
Thus, the last two groups of rows of Table 5 correspond to capturing some limited amount of route
selection decisions.

In Table 5, all the numbers in parentheses are the differences relative to “Status Quo”. The table
provides several insights. First, the costs and revenues computed by our approach are both higher
than those under the status quo in all cases. Furthermore, in each case, a profit higher than the
status quo is obtained because the absolute revenue growth is greater than the absolute cost increase.
As expected, in the “Freq ±0” case, with the segment frequencies not allowed to change, the cost
growth is driven only by the reassignment of aircraft types corresponding to different operating costs.
Consequently, the corresponding cost changes are small (in the 0.02%-2.83% range). On the other
hand, revenue increases by 2.04%-2.49%, primarily driven by prioritizing high-value passengers (see
Section 7.2), leading to a profit increase of 3.50%-4.39%. In the “Freq ±1” and “Freq ±2” cases (with
m = 1), the costs and revenues increase across the board by 6.65%-12.23%, due to the increase in the
number of flights operated and passengers carried, respectively. In all cases, the absolute increase in
revenue is greater than the cost increase, leading to larger profits by 6.96%-13.32%.

Setting m = 0 rather than m = 1 allows the model to consider solutions with even lower frequencies
on some segments (zero instead of one), which can lead to fewer scheduled flights, lower costs, and
lower revenues on those segments. However, this flight reduction also creates opportunities to use
the corresponding spare capacity in a potentially more profitable way in other segments. Indeed,
the last two groups of rows of Table 5 support this conclusion. Specifically, comparing m = 0 with
the corresponding m = 1 rows (for both n = 1 and n = 2), we remark that costs remain almost
constant (with increases between 0.14 and 1.15 percentage points), hinting at the fact that the aircraft
utilisation constraints were already binding for m = 1. At the same time, replacing less profitable
routes with more profitable ones leads to consistent revenue increase (between 2.96 and 4.93 percentage
points) and, ultimately, increased profits (with increases between 4.74 and 8.56 percentage points). In
terms of absolute daily profit increase for the YV + YX instance, we remark that only performing
fleet assignment and retiming (Freq ±0) yields an improvement of a little over $80k; adding a limited
frequency optimization component raises this figure to nearly $250k (Freq ±2 and m = 1); further
allowing route selection brings the figure to almost $400k (Freq ±2 and m = 0).

In the remainder of this section, we focus our attention on the m = 1 case.

7.2 Operational Drivers of Improvement
To understand the main reasons for the improvement obtained by our approach, in Table 6, we
present key operational metrics associated with the various solutions corresponding to the joint YV
+ YX instance. Table 6 presents the number of flights, average flight distance in nautical miles (nm)
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YV YX YV+YX
mmm Revenue Cost Profit Revenue Cost Profit Revenue Cost Profit

Status Quo 1,664,272 696,246 968,026 1,723,135 839,696 883,439 3,387,407 1,535,941 1,851,465

Freq ±0±0±0 111
1,698,251 696,348 1,001,903 1,762,283 842,073 920,211 3,471,732 1,538,942 1,932,790
(+2.04%) (+0.02%) (+3.50%) (+2.27%) (+2.83%) (+4.16%) (+2.49%) (+0.20%) (+4.39%)

Freq ±1±1±1 111
1,805,247 742,565 1,062,682 1,869,700 924,730 944,970 3,713,894 1,670,419 2,043,474
(+8.47%) (+6.65%) (+9.78%) (+8.51%) (+10.13%) (+6.96%) (+9.64%) (+8.76%) (+10.37%)

Freq ±2±2±2 111
1,841,328 751,723 1,089,605 1,933,830 936,473 997,357 3,790,470 1,692,362 2,098,108

(+10.64%) (+7.97%) (+12.56%) (+12.23%) (+11.53%) (+12.89%) (+11.90%) (+10.18%) (+13.32%)

Freq ±1±1±1 000
1,884,902 744,803 1,140,099 1,953,937 933,405 1,020,532 3,814,298 1,683,081 2,131,217

(+13.26%) (+6.97%) (+17.78%) (+13.39%) (+11.16%) (+15.52%) (+12.60%) (+9.58%) (+15.11%)

Freq ±2±2±2 000
1,903,727 752,728 1,150,999 1,994,866 938,120 1,056,746 3,957,599 1,709,924 2,247,675

(+14.39%) (+8.11%) (+18.90%) (+15.77%) (+11.72%) (+19.62%) (+16.83%) (+11.33%) (+21.40%)

Table 5: Key financial metrics of the solutions of the Mesa (YV), Republic (YX), and joint (YV +
YX) instances.

Status Quo Freq ±0±0±0 Freq ±1±1±1 Freq ±2±2±2

Number of flights 218 218 240 246
Avg flight distance (nm) 571.0 571.0 584.7 587.4
RASM 36.5 37.3 35.5 35.2
CASM 16.6 16.5 16.0 15.7
Passengers carried 14908 14920 16211 16666

Non-stop 66% 66% 66% 66%
one-stop 34% 34% 34% 34%

Avg fare $227 $233 $229 $227
Non-stop $223 $229 $227 $225
one-stop $242 $246 $238 $236

Light retiming — 63% 58% 60%

Table 6: Key operational metrics of the solutions of the joint network instance (YV + YX).
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Variation in the number of flights compared to the Status Quo schedule

Figure 3: Variation in the number of flights in the optimized YV + YX schedule compared to the
“Status Quo”.
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Figure 4: Flight distance distribution in the optimized YV + YX schedules.

(sometimes called “Stage Length”), revenue per available seat-mile (RASM), cost per available seat-
mile (CASM), number of passengers carried (both non-stop and one-stop), average fare per passenger
(both non-stop and one-stop), and the number of flights that underwent only a small amount of
retiming (called “Light Retiming”). Note that “Light Retiming” is defined as the percentage of flights
in a given schedule that have a matching flight in the status quo schedule on the same segment within
±30 minutes of its departure time. If an optimized schedule has multiple flights within ±30 minutes
of the departure time of a flight in the status quo schedule, then we can match with that flight in the
status quo schedule only the closest flight in the optimized schedule.

When comparing our “Freq ±0” solutions with the status quo solutions, as expected, the number of
flights and average flight distance remain unchanged since we can only change the flight times and
the aircraft types assigned to each flight. Retiming aligns flights with the peak demand times of
higher-profit markets, even if it may lead to some misalignment of flight times with peak demand
times in lower-profit markets to meet the aircraft availability constraints. This increases average fares
despite carrying a similar number of passengers. Consequently, RASM increases by 2.2%, while CASM
remains flat, leading to the 4.4% profit improvement.

When we move from “Freq ±0” to “Freq ±1” and “Freq ±2” solutions, the drivers of the further
improvements are quite different from those that provide improvement when going from “Status Quo”
to the “Freq ±0” solution. First, “Freq ±1” and “Freq ±2” progressively increase the number of
flights relative to “Freq ±0”, by 10% and 13%, respectively. This leads to 9% and 12% growth in
the number of passengers but causes a reduction in the average fares because the “Freq ±0” solution
already captures most of the high-fare passengers requiring the “Freq ±1” and “Freq ±2” solutions
to dig deeper in search of additional revenue. Moreover, Table 6 shows that compared to the “Freq
±0” solution, the “Freq ±1” and “Freq ±2” solutions use more long-distance flights, which also helps
reduce CASM, and further increases profit.

The split of the one-stop versus non-stop passengers stays similar for all four schedules. Furthermore,
roughly 60% of the flights in the optimized schedules correspond to light retiming. In other words,
approximately 40% of the flights in each of the optimized schedules have a departure time substantially
different from that of a matching flight in the status quo schedule.

Figure 3 groups all 134 segments in the YV + YX instance based on daily frequency changes (with
respect to the “Status Quo”) in the “Freq ±1” and “Freq ±2” solutions. The number in the cell
identified by value x ∈ {−2,−1, 0, 1, 2} on the horizontal axis and y ∈ {−1, 0, 1} on the vertical axis
gives the number of segments whose frequency changed by x in the “Freq ±2” solution and by y in
the “Freq ±1” solution. First, 102 out of the 134 segments undergo no frequency change in either the
“Freq ±1” or “Freq ±2” solution, implying that those segments only underwent flight retimings and/or
aircraft type adjustments. In contrast, 18 segments see the maximum allowable frequency increase
and two segments see the maximum allowable frequency decrease, thus highlighting the segments with
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Figure 5: Effect of retiming on profits in the joint instance (YV + YX). “Baseline” case allows
unlimited retiming. “RT ± t” cases allow flights to be retimed by < t minutes compared to the status
quo schedule.

the greatest frequency adjustment potential. Four other segments see an increase of one flight per
day, and two others see a decrease of one flight per day, regardless of the frequency change limit,
indicating that the status quo frequency was off by one per day compared to the optimal schedule.
More interestingly, two segments do not undergo a frequency change in the “Freq ±1” schedule, but
the “Freq ±2” schedule reduces their frequency by one. This phenomenon indicates that the model
sacrifices frequency on these segments to provide enough aircraft time to operate the more profitable
segments that see their frequency increase by two. Finally, a more extreme version of this phenomenon
is seen in the case of four other segments, which have their frequency increase by one in the “Freq ±1”
schedule but undergo a frequency reduction by one in the “Freq ±2” schedule.

Figure 4 shows the total number of flights by flight distance for the YV + YX instance. The left
subfigure includes all segments, the middle includes segments with more than one daily flight in the
status quo schedule, and the right subfigure includes the segments with more than two daily flights
in the status quo schedule. The right subfigure is of particular interest because it shows the trends
for only those segments that allow the optimization model to explore the full spectrum of alternatives,
ranging from reducing the daily frequency by two to increasing the daily frequency by two. As we move
from the “Freq ±0” schedule to “Freq ±1” schedule to “Freq ±2” schedule, we notice that the number
of flights increases for most flight distances higher than 400 nautical miles (nm) but slightly decreases
for the 300-400 nm flight distance range. This indicates that a major driver of profit improvement is
an increase in longer and more profitable flights with some reduction in the number of shorter-distance
flights to satisfy the aircraft availability constraints. This is consistent with the fact that, as shown
in Table 6, compared to the “Freq ±0” schedule, the average flight distance increases by 2.4% for the
“Freq ±1” schedule and by 2.9% for the “Freq ±2” schedule.

7.3 Value of Comprehensive Schedule Planning
Our approach focuses on a comprehensive timetabling problem, which provides the optimization model
complete freedom to choose the departure times and aircraft types for each flight. In comparison, sev-
eral previous studies have focused on incremental timetabling decisions. The incrementality is manifest
in one of two ways: some studies only allow retiming flights within a small window around their de-
parture times in an existing schedule, while others only allow choosing flights from a predetermined
set of optional flights. Thus, an interesting question relates to the additional benefits accrued by
the comprehensive timetabling approach compared to the incremental approaches. Figures 5 and 6
provide one way to visualize these benefits.

Figure 5 plots the profit of the YV + YX instance against the size of the retiming window. Specifically,
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Figure 6: Effect of retaining a random subset of possible departure times for each segment in the joint
instance (YV + YX). “Baseline” retains all departure times. Each violin plot uses 10 random draws.

from left to right, the window size increases from ±45 minutes (min) to ±90 min. The rightmost point
shows the profit for our “Freq ±0” schedule, which allows unlimited retiming (denoted as “Baseline” in
this figure). As noted before, the “Baseline” profit is 4.39% higher than that of the status quo schedule.
When restricting window sizes to ±45 min, the profit improvement relative to the status quo schedule
decreases to 1.98%. Similarly, window sizes of ±60, ±75, and ±90 min yield profit increases of 3.15%,
3.33%, and 3.65%, respectively. Thus, incremental retiming approaches can capture between 45% (for
the ±45 min window size) and 83% (for the ±90 min window size) of the profit improvement provided
by our comprehensive timetabling approach. In other words, we stand to lose more than half of the
benefits of our timetable optimization if we restrict departure times to the ±45 min retiming window.

Our comprehensive timetabling approach decides the periods used as departure times for the flights in
each segment, along with the corresponding aircraft type assigned to each selected period. A common
way of incremental timetabling in the literature (called the “optional flights” approach) involves pre-
selecting a set of candidate periods in each segment and letting the optimization model choose from
those. In essence, this optional flights approach is a restricted version of the comprehensive timetabling
that involves fewer periods to choose from. To quantify the additional benefits of comprehensive
timetabling compared to the optional flights approach, we characterize the relationship between profit
and the number of candidate periods. To this end, we conducted a number of experiments in which we
allowed flights to depart only in a subset of the periods in the planning horizon. This subset contains
all the departure periods in the status quo schedule, plus other randomly selected periods, totalling
z% of the available periods, with z ∈ {10, 15, 20, 25, 30, 35, 40}. We create ten random subsets for each
value of z and demonstrate the results in Figure 6 as a series of violin plots of the profits against the
percentage of candidate departure time periods retained.

Note that we recover approximately half of the benefits of comprehensive timetabling by retaining just
20% of the departure times. However, the profit curve in Figure 6 starts to flatten beyond that point,
making it harder to recover the remaining profit gains through this incremental approach. Overall, this
figure shows that comprehensive timetabling allows additional profit gains that are between ≈ 310%
(at z = 10%) and ≈ 33% (at z = 40%) compared to those achieved by an optional flights approach.

7.4 Sensitivity to the Regional-Regional Split Market Assumption
Recall that we split markets that are served with an itinerary composed of two regional flights (Spoke
A–Hub–Spoke B) into two separate markets (Spoke A–Hub and Hub–Spoke B). These passengers
represent a small fraction of the total market size (see Table 1). For example, as mentioned in
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Figure 7: Profit comparison on the joint instance (YV + YX) for the schedules optimized under the
split market assumption and evaluated with (in blue) and without (in orange) the assumption.

Section 3, when considering mainline UA and regionals YV and YX, only 1.33% of the passengers
use an itinerary with more than one segment operated by regional airlines. This introduces some
inaccuracy in our final results. However, the direction and magnitude of this inaccuracy are unclear
because this assumption causes two opposite effects.

On the one hand, rescheduling some regional flights might break a previously feasible connection at
the hub. Under the split market assumption, we still optimistically allocate passengers affected by this
disruption to our Spoke A–Hub and Hub–Spoke B flights. In reality, these passengers might not be
able to complete their itinerary using the new schedule. On the other hand, the new schedule might
now enable new connections that were not possible in the status quo schedule, creating new markets
that were previously not served. The first effect suggests that our results presented in Section 7.1
might overestimate the true profit improvement, whereas the second effect suggests that they might
underestimate it.

In this section, we estimate the net impact of these two opposite effects by focusing on the YV + YX
instance. We first solve the three scenarios (“Freq±0”, “Freq±1”, and “Freq±2”) using our column
generation algorithm while retaining the split market assumption. Then, we fix the resulting schedules
and replace the split markets (Spoke A–Hub and Hub–Spoke B) with the original Spoke A–Hub–Spoke
B markets. At the same time, we introduce new markets not present in the original instance because
they were currently unserved and, therefore, their passengers did not appear in the databases we used.
For this reason, we do not know the exact market sizes and fares for these new markets. We estimate
the sizes of the new markets using a gravity model (see, e.g., Morley et al. 2014) and estimate their
fares by choosing, for each new market, the existing market with the most similar size and assuming
the same fare per mile. In this way, we avoid using the fare of a large market for a small one and
vice versa. Finally, we run a network-wide passenger allocation model (described in Appendix C)
using these market sizes and attractiveness values calculated using the estimated fares for the possible
itineraries in the new schedule.

Figure 7 shows the resulting profits with (in blue) and without (in orange) the split market assumption.
We find that the net impact of these two opposite effects can be positive or negative. In case of the
“Freq±0” and “Freq±1” instances, relaxing the assumption leads to a slight reduction in the profit
improvement (between 1.3 and 1.6 percentage points) obtained by the optimized schedules, whereas
the “Freq±2” instance shows a higher profit improvement (by 2.7 percentage points) when we relax
the assumption. In fact, the average profit for the three instances remains identical (within ≈ 0.08%)
with and without the split market assumption.
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Figure 8: Profit comparison for different percentages of passengers having a minimum connection time
of 1 hour instead of the default 30 minutes.

7.5 Impact of Connection Times
Recall our assumption that all passengers in the same market follow the same itinerary as long as
their itinerary includes one regional flight and one mainline flight, and they take the same regional
flight. For example, all passengers on the MAF-IAH-ORD path who take a regional MAF-IAH flight
with Mesa Airlines that departs at 8 am and arrives at 10 am will continue their itinerary on the
same mainline flight. If there are mainline flights departing at 10:50 am, 11:50 am, and 12:50 pm on
segment IAH-ORD, then all MAF-IAH-ORD passengers arriving on the Mesa flight to IAH at 10
am will take the 10:50 am departure to ORD, assuming that the 50-min connection time is more
desirable for passengers than the 110- or 170-min connection times. Specifically, we assume that all
passengers will choose the connection with the shortest connection time above a minimum value of
30 min. In this section, we evaluate the impact of relaxing this assumption by allowing passengers
on the same path and the same regional flight to choose from multiple mainline flights. Specifically,
Figure 8 shows the effect of a varying percentage of passengers choosing a connection with 30- versus
60-min of minimum layover duration. Figure 8 demonstrates that minor violations of our assumption
(for example, changing the percentage of passengers with a 30-min minimum layover duration from
100% to 80% or 90%) results in only slight changes in total profit (by 0.12%-0.36%). However, larger
violations (for example, changing the percentage from 100% to 50%, 60% or 70%) can dilute the profit
improvements generated by our approach. This emphasizes that in order to maximize the benefits of
our approach, it is critical to capture passenger preferences with at least a moderate level of accuracy.

8 Discussion
This paper presented a new column-generation-based modeling and algorithmic approach to jointly
optimize medium-term schedule planning decisions of a regional airline for a given schedule of the
mainline partner carrier. We developed an original mathematical formulation for the integrated op-
timization of flight timetabling, fleet assignment, frequency planning, and some limited aspects of
route planning. Our formulation adopted a composite variable approach with a very tight continuous
relaxation, where each variable indicates a particular segment schedule. Moreover, our formulation
endogenously captured passengers’ booking decisions through a sales-based linear programming refor-
mulation of a general attraction discrete choice model. We accelerated the column generation approach
by developing a new acceleration strategy based on dynamic programming to quickly identify promis-
ing columns. Combined with implicit dual smoothing, symmetry breaking, and subproblem aging,
this acceleration approach allowed us to solve large-scale real-world instances to near-optimality in

25



less than 3 hours. Extensive computational experiments based on some of the largest real-world re-
gional airline networks that can be constructed using public datasets demonstrated that our approach
can yield hundreds of thousands of dollars in daily profit improvements to the airline. In addition,
these findings remained stable under a variety of sensitivity and robustness checks.

From a practical point of view, a promising direction for future research includes extending this
modeling and algorithmic framework to airlines that have network structures different from regional
airlines. There is also an opportunity to integrate additional modeling considerations related to
aircraft routing and crew scheduling into the formulation to enable a more seemless integration with
these downstream schedule planning steps. From a methodological perspective, our restricted master
heuristic provided solutions with optimality gaps of up to 0.2%. Future research studies could explore
the possibility of implementing a full branch-and-price strategy to potentially eliminate this small
remaining degree of suboptimality.
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A Details of the Network-Wide Model Extensions
This section formalizes the model extensions introduced in Section 4.2.1 using the sets and parameters
described in Table 7.

Route selection. Changing the equality constraint (6b) to a less-than-or-equal-to constraint changes
the domain of the corresponding dual values λ(6b)

ij from R to R+
0 but does not otherwise affect the

column generation procedure.

Airport slot restrictions. We can limit the number of flights departing and arriving during each
period by adding the following two constraints:∑

j : (i,j)∈L

∑
S∈Sijt

yS ≤ τ+it ∀i ∈ D, ∀t ∈ T (12)

∑
j : (j,i)∈L

∑
S∈S̄jit

yS ≤ τ−it ∀i ∈ D, ∀t ∈ T. (13)

The reduced cost (7) of a segment schedule S ∈ Sij is modified by subtracting the following terms:∑
t∈TS

λ
(12)
it +

∑
t∈T̄S

λ
(13)
jt ,

where λ(12)
it ≥ 0 and λ

(13)
it ≥ 0 are the dual variables associated with (12) and (13). In the pricing

subproblem, we subtract quantity λ(12)
it + λ

(13)
j,t+Fa

ij
from coefficient c̄aijt used in (10).

Mainline capacity. We can impose flight capacity constraints on mainline flights by adding the
following inequality:∑

j∈L+
g

∑
t∈U+

gj

∑
S∈S+

gjt

x̄+gjtSyS +
∑
j∈L−

g

∑
t∈U−

gj

∑
S∈S−

gjt

x̄−gjtSyS ≤ Pg ∀g ∈ Γ. (14)

Constraint (14) ensures that capacities are respected on mainline flights preceding and following the
connecting regional flights. The first sum counts regional passengers arriving at the departure hub of
mainline flight g and then transferring to g. The second term counts regional passengers arriving at
the arrival hub of mainline flight g and then transferring to a regional flight. The reduced cost of a
segment schedule S ∈ Sij is modified by subtracting term∑

q∈Qij

∑
t∈TS∩T+

ijq

x̄ijqtSλ
(14)
g+ijqt

if j is a hub (j ∈ H) or term ∑
q∈Qij

∑
t∈TS∩T−

ijq

x̄ijqtSλ
(14)
g−ijqt

if i is a hub (i ∈ H), where λ
(14)
g ≥ 0 is the dual variable associated with (14). In the pricing

subproblem, we subtract quantity λ(14)
g+ijqt

from coefficient f̄ijqt if j is a hub and quantity λ(14)
g−ijqt

if i is a
hub.

Aircraft utilization. We can impose maximum average utilization constraints using the following
inequalities: ∑

S∈S
Ra

SyS ≤ ua
∑
i∈Da

wa
i1 ∀a ∈ A. (15)

The sum on the right-hand side counts how many aircraft of type a are used in the solution. This
number typically equals the fleet size Na because airlines use all the available aircraft. The reduced
cost of a schedule S ∈ Sij is changed by subtracting the following term:∑

a∈Aij

|T a
S | · F a

ij · λ(15)
a ,
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Set Description
H ⊆ D Hubs served by the regional airline.
Γ Mainline flights with at least one endpoint at a hub served by the regional airline.
Γ+ ⊆ Γ Mainline flights departing from a hub served by the regional airline.
Γ− ⊆ Γ Mainline flights arriving at a hub served by the regional airline. Remark: Γ+∩Γ−

are hub-to-hub mainline flights.
Γ+
i ⊆ Γ+ Mainline flights departing from i ∈ H.

Γ−
i ⊆ Γ Mainline flights arriving at i ∈ H.
L+
g ⊆ L Segments of type (j, i+g ) for g ∈ Γ+. In words, these are the segments operated

by the regional airline with a destination airport that is the origin for a mainline
flight g ∈ Γ+.

L−
g ⊆ L Segments of type (i−g , j) for g ∈ Γ−. In words, these are the segments operated

by the regional airline with an origin airport that is the destination of a mainline
flight g ∈ Γ+.

U+
gj ⊆ T Departure times for regional flights on segment (j, i+g ) ∈ L+

g such that passengers
can then transfer to g ∈ Γ+ at i+g ∈ H.

U−
gj ⊆ T Departure times for regional flights on segment (i−g , j) ∈ L+

g such that passengers
could have transferred from g ∈ Γ− at i−g ∈ H.

Sijt ⊆ Sij Schedules for segment (i, j) ∈ L containing a flight departing in period t ∈ Tij .
S̄ijt ⊆ Sij Schedules for segment (i, j) ∈ L containing a flight arriving during period t ∈ T .
S+
gjt ⊆ S Schedules for segment (j, i+g ) ∈ L+

g containing a regional flight departing during
period t ∈ U+

gj .
S−
gjt ⊆ S Schedules for segment (i−g , j) ∈ L−

g containing a regional flight departing during
period t ∈ U−

gj .
T+
ijq ⊆ Tij Departure periods for regional flights in segment (i, j) ∈ L for which parameter

g+ijqt (see below) is defined.
T−
ijq ⊆ Tij Departure periods for regional flights in segment (i, j) ∈ L for which parameter

g−ijqt (see below) is defined.
TS ⊆ T Departure periods of flights in schedule S ∈ S.
T̄S ⊆ T Arrival periods of flights in schedule S ∈ S.
T a
S ⊆ T Departure periods of flights operated with an aircraft of type a ∈ A in schedule

S ∈ S.
Parameter Description
τ+it ∈ Z+ Maximum number of departures from airport i ∈ D during period t ∈ T .
τ−it ∈ Z+ Maximum number of arrivals at airport i ∈ D during period t ∈ T .
i+g ∈ H Departure hub for g ∈ Γ+.
i−g ∈ H Arrival hub for g ∈ Γ−.
x̄+gjtS ≥ 0 Number of passengers on the regional flight from j to i+g departing during period

t ∈ U+
gj according to schedule S ∈ S+

gjt, who will later transfer to mainline flight
g ∈ Γ+ at hub i+g .

x̄−gjtS ≥ 0 Number of passengers on the regional flight from i−g to j departing during period
t ∈ U−

gj according to schedule S ∈ S−
gjt, who transferred from mainline flight

g ∈ Γ− at hub i−g .
g+ijqt ∈ Γ+

j Mainline flight out of j ∈ H taken by passengers of market q ∈ Qij travelling
on a regional flight in segment (i, j) ∈ L departing during period t ∈ Tij . This
parameter is only defined for periods t such that a regional-to-mainline transfer
is possible at j.

g−ijqt ∈ Γ−
i Mainline flight to i ∈ H taken by passengers of market q ∈ Qij travelling on

a regional flight in segment (i, j) ∈ L departing during period t ∈ Tij . This
parameter is only defined for periods t such that a mainline-to-regional transfer
is possible at i.

Pg > 0 Capacity of mainline flight g ∈ Γ.
Ra

S ≥ 0 Total flight time of an aircraft of type a ∈ A in schedule S ∈ S.
ua ≥ 0 Maximum average flight time for a ∈ A.
F a
ij ∈ Z+ Flight time (in periods) from i to j, with (i, j) ∈ L, on an aircraft of type a ∈ Aij .

Table 7: Sets and parameters used in Appendix A.
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Set Description
Q ⋆ Set of all markets, including the new ones created when the split market assump-

tion is relaxed.
T ′ ⋆ Itinerary start periods for passengers. It is a superset of T because an itinerary

could start before our planning horizon.
T̂ij Departure times of flights on segment (i, j) ∈ L in the optimized schedule.
Ωqt Set of tuples of the form (i, j, s, a) describing the regional flights with flight origin

i, flight destination j, flight departure time s and aircraft type a, which are used
by a passenger in market q ∈ Q starting their itinerary at time t ∈ T ′. Since we
include both non-stop and one-stop passengers, the size of set Ωqt can be 0, 1 or
2.

Parameter Description
ẑaijt Binary parameter taking value one if there is a flight on segment (i, j) ∈ L oper-

ated by an aircraft of type a ∈ Aij at time t ∈ T a
ij in the optimized schedule.

âijt Aircraft type used to operate a flight on segment (i, j) ∈ L at time t ∈ T̂ij in the
optimized schedule.

fqt ⋆ Fare for a passenger in market q ∈ Q starting their itinerary at time t ∈ T ′

flying on the segment(s) operated by the regional airline. Unlike in Section 4,
an itinerary in this passenger allocation model can include two regional airline
segments.

αqt ⋆ Attractiveness of the itinerary that starts at time t ∈ T ′ in market q ∈ Q.
βq ⋆ Outside option attractiveness for market q ∈ Q.
Mq ⋆ Size of market q ∈ Q.

Table 8: Sets and parameters used in Appendix C. A ⋆ next to the parameter name indicates that this
parameter has been redefined with a related but slightly different meaning compared to Section 4.

where λ(15)
a ≥ 0 are the dual variables associated with (15). In the pricing subproblem, we subtract

F a
ijλ

(15)
a from coefficients c̄aijt.

B Early Termination
To use our algorithm for faster decision-making or to perform multiple scenario analyses on large
instances, we might want to reduce its computational runtime by terminating the column generation
procedure early. We would then obtain a primal solution via the reduced master heuristic. Unfortu-
nately, we would not have a valid dual bound to assess the solution’s quality because we did not solve
[MP] to optimality. In the following, we derive a Lagrangian bound (see, e.g., Lübbecke and Desrosiers
2005) that is valid even in case of early termination. Let Z∗ ∈ R be the unknown optimal objective
value of [MP], and Z ∈ R be the optimal objective value of an instance of the reduced [MP]. Let
∆ij > 0 be the highest reduced cost of a column of Sij , according to the duals of the reduced [MP]. We
can obtain ∆ij by solving all pricing subproblems to optimality. We then choose, for each subproblem,
the generated column with the highest reduced cost, if positive. Otherwise, if a subproblem for (i, j)
proves that no positive reduced cost column exists, ∆ij = 0. We can then use a Lagrangian bound to
obtain that Z∗ ≤ Z+

∑
(i,j)∈L∆ij , where constraints (6b) act as convexity constraints on each set Sij

(see, e.g., Wolsey 2021, §11.5.1).

C Passenger Allocation Model for the Regional-Regional Split Mar-
ket Assumption

In this appendix, we present the approach used to allocate passengers to the optimized schedule under
the split market assumption (see Section 7.4) when new markets are introduced. Recall that Q denotes
the set of all markets (sets and parameters used in this appendix are defined in Table 8). We retain the
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symbols used in the main body of the paper (α and β for the attractiveness of all itineraries and the
outside option, f for the fare, M for the market size), but we give them different indices and slightly
different meanings as explained in Table 8. We now solve a network-wide passenger allocation model
for the entire network rather than solving a segment-by-segment pricing subproblem as in Section 4.1;
therefore, we update the meaning of the above parameters to reflect this change. Similarly, we continue
to use the letter x for the following variables: The variable xq0 ≥ 0 for q ∈ Q denotes the number
of passengers in market q who choose the outside option. The variable xqt ≥ 0 for q ∈ Q and t ∈ T ′

denotes the number of passengers in market q who start their itinerary at time t and use one or more
regional flights. We note that the passenger’s itinerary can start with a regional flight (eventually
followed by a mainline or another regional flight) or with a mainline flight (followed by a regional one).
Indeed, we include in our model the following itinerary types: (a) Regional; (b) Regional + Mainline;
(c) Mainline + Regional; (d) Regional + Regional. Whereas our main model included itineraries of
types (a)–(c), we also include itineraries of type (d) in the following passenger allocation model.

A Linear Programming formulation for the network-wide passenger allocation model reads as follows.

max
∑
q∈Q

∑
t∈T ′

fqtxqt (16a)

subject to βqxqt ≤ αqtxq0 ∀q ∈ Q, ∀t ∈ T ′ (16b)

xq0 +
∑
t∈T ′

xqt =Mq ∀q ∈ Q (16c)∑
(q,t)∈Q×T ′:

(i,j,s,âijs)∈Ωqt

xqt ≤ P âijs ∀(i, j) ∈ L, ∀s ∈ T̂ij (16d)

xqt ≥ 0 ∀q ∈ Q, ∀t ∈ T ′ (16e)
xq0 ≥ 0 ∀q ∈ Q. (16f)

The objective function (16a) maximizes the fare revenue. Constraints (16b), (16c) and (16d) are anal-
ogous, respectively, to (2c), (2d) and (2e), but now adapted to the network-wide passenger allocation
model. We remark that market sizes Mq for new markets were estimated according to the formula

Mq = k · out(o) · in(d)
dist(o, d) ,

where o and d are the market origin and destination, out(o) is the number of passengers in markets
with origin o, in(d) is the number of passengers in markets with destination d, dist(o, d) is the geodesic
distance between airports o and d, and k is a parameter estimated using the DB1B dataset.

D Case Study Setup
We test our modeling and computational approach on instances based on real-world data on the
U.S. domestic market gathered from multiple data sources, namely the Airline On-Time Performance
(AOTP) dataset, the Airline Origin and Destination Survey (DB1B) and the Form 41 dataset from
the Bureau of Transportation Statistics 2023a; Bureau of Transportation Statistics 2023b; Bureau
of Transportation Statistics 2023c, and the aircraft registration database from the Federal Aviation
Administration 2023. We used data from June 2022 and considered United Airlines (UA) as the main-
line carrier and Mesa Airlines (YV), Republic Airways (YX) and SkyWest Airlines (OO) as regional
airlines. This choice is motivated by the greater data availability, partly due to data reporting obli-
gations for airlines above a certain size, compared to alternatives. We consider both the optimization
of each regional airline by itself and jointly. In the latter case, our instance uses seven hubs (ORD,
EWR, IAD, IAH, LAX, SFO and DEN) and 149 spokes for a total of 534 non-stop segments and 3312
markets (see Figure 2). We now describe how to estimate the main model parameters from the above
data sources.
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Fleet composition, costs, fares and market sizes. We use our data sources to determine how
many aircraft each regional airline employs to operate flights ticketed under United Airlines’ United
Express brand. In addition to collaborating with United Airlines, Mesa also operated under the
American Airlines American Eagle brand until 2023, Republic operates under the American Eagle and
Delta’s Delta Connection brands, and SkyWest operates under the Alaska Airlines, American Eagle,
and Delta Connection brands. The aircraft registration database and the airline company websites
report the aircraft capacities. We estimate operating costs using the short-haul formulas of Swan
and Adler (2006), adjusted for inflation. We use fares data from the DB1B database. For multi-
leg itineraries, only the total fare is available; in this case, we assume that the regional leg fare is
proportional to its length. We derive flight times and minimum turnaround times from AOTP data;
in particular, we have minimum turnaround times that are functions of both the aircraft type and the
airport. Note that, as is the typical case for regional airlines, there are only a small number of distinct
aircraft types across the entire fleet of our case study networks of regional airlines. They consist
primarily of Canadair Regional Jets (CRJs) and Embraer aircraft. We generate our data on market
sizes and reasonable paths through the network using the DB1B database. Since DB1B includes a
10% sample of passenger tickets, we scaled it up by multiplying by 10, and then by a further factor of
1.1 to account for passengers who used the outside option, in order to obtain the total market sizes.

Attractiveness data. We compute attractiveness values αijqt using the method proposed by Barn-
hart, Fearing, et al. (2014) and assuming a minimum connection time of thirty minutes for one-stop
itineraries. To do this, we used the mainline schedules of a reference day, June 29th 2022. Given the
market sizes, the attractiveness values α, and the number of passengers carried from our data sources,
if the flights were not subject to seating capacities, we could apply eq. (1) to recover the attractiveness
values of the outside option β. However, because of the seating capacity limits, the ratio between the
number of passengers taking each option (including the outside option) does not necessarily match the
ratio between the options’ attractiveness values. Therefore, we use the following approach to derive
realistic β. First, we produce estimates β̂ disregarding seating capacities. Note that if these estimates
were correct, solving problem (2a)–(2h) with the fixed real-world schedule would give passenger num-
bers that closely match those observed in the data. Otherwise, we should adjust the values of β̂ to
make the numbers match. However, each βijq can potentially require a different adjustment factor,
making the search for such factors computationally expensive and prone to overfitting to the data.
To overcome this issue, we adjust all estimates β̂ simultaneously using a single multiplicative factor
from a small search grid (fifteen logarithmically distributed values between 10−3 and 1, in our case).
To select the best factor, we quantify the similarity between the passenger numbers obtained from
(2a)–(2h) and the real ones using their mean absolute deviation.

E Impacts of Demand Uncertainty and Revenue Management prac-
tices

The results presented in Section 7 have assumed that the demand for each passenger itinerary is
deterministic and that the average fares for each itinerary are known and fixed. In practice, passenger
demand can fluctuate considerably from one day to another, and this uncertainty can impact the
actual number of passengers carried by the airline. Too few passengers on a given day can lead to
reduced revenue, while too many passengers compared to those estimated can lead to some passengers
not being accommodated (or getting “spilled”) due to aircraft seating capacity limits. Spill estimation
models usually make some assumptions about the demand distribution and compute the expected
number of passengers as the expected value of the demand distribution truncated by the number of
seats. As mentioned in Section 7, our results have indirectly captured the effects of demand uncertainty
by imposing a hard upper limit of 93% on the maximum number of seats sold in each segment.

The load factor is a non-decreasing function of the demand factor. The demand factor is the ratio of
passenger demand divided by seat capacity. All else being equal, adding more flights to a segment,
thus increasing the seat capacity, would decrease the demand factor. Our “Freq ±1” and “Freq ±2”
schedules have more segments with an increase rather than a decrease in flight frequency and the
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Without correction With correction
Revenue Cost Profit Revenue Cost Profit

Status Quo 3,387,407 1,535,941 1,851,465 3,387,407 1,535,941 1,851,465

Freq ±0±0±0
3,471,732 1,538,942 1,932,790 3,458,547 1,538,942 1,919,605
(+2.49%) (+0.20%) (+4.39%) (+2.10%) (+0.20%) (+3.68%)

Freq ±1±1±1
3,713,894 1,670,419 2,043,474 3,589,626 1,589,970 1,999,656
(+9.64%) (+8.75%) (+10.37%) (+5.97%) (+3.52%) (+8.00%)

Freq ±2±2±2
3,790,470 1,692,362 2,098,108 3,637,440 1,622,231 2,015,209

(+11.90%) (+10.18%) (+13.32%) (+7.38%) (+5.62%) (+8.84%)

Table 9: Comparison of key financial metrics on the joint network instance (YV + YX) with and
without applying the ICO process described in Appendix E.

Without correction With correction
Status Quo Freq ±0±0±0 Freq ±1±1±1 Freq ±2±2±2 Freq ±0±0±0 Freq ±1±1±1 Freq ±2±2±2

Number of flights 218 218 240 246 218 228 236
Avg flight distance 571.0 571.0 584.7 587.4 571.0 579.2 581.1
RASM 36.5 37.3 35.5 35.2 37.3 36.0 35.8
CASM 16.6 16.5 16.0 15.7 16.6 16.2 15.9
Passengers carried 14908 14920 16211 16666 14922 15676 16151

Non-stop 66% 66% 66% 66% 66% 66% 66%
One-stop 34% 34% 34% 34% 34% 34% 34%

Avg fare $227 $233 $229 $227 $231 $229 $227
Non-stop $223 $229 $227 $225 $228 $227 $225
One-stop $242 $246 $238 $236 $244 $240 $238

Light retiming — 63% 58% 60% 65% 61% 60%

Table 10: Key operational metrics of the solutions of the joint network instance (YV + YX) with and
without applying the ICO process described in Appendix E.
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number of seats per segment. This implies that we should expect a slightly lower demand factor. Of
course, by offering flights at desirable departure times, we hope to attract more passenger demand, thus
increasing the numerator of the demand factor. Our results in Section 7.1 simplify these complexities
using a hard upper limit on load factors.

In addition, nearly all airlines practice revenue management (RM) methods, which greatly affect the
fares of spilled passengers because they try to ensure that spilled passengers are predominantly low-
fare passengers in a given segment. Our results in Section 7.1 simplify this effect by assuming identical
fares for all passengers in a given market. Belobaba and Farkas 1999 showed that revenue management
practices affect spilled passenger fares and the number of spilled passengers. In this section, we use
the approach proposed by Belobaba and Farkas 1999 to approximately capture the effects of demand
uncertainty and revenue management practices on the number of passengers carried, the average fares
of the passengers carried, and consequently the profit of the airline. Similar to the process described in
Section 5.4 of Vaze and Barnhart 2012, we change the fare of each market in each segment by applying
the correction suggested by Belobaba and Farkas 1999. This results in a new instance with different
values of the fare parameters fijqt. We then re-optimize this instance by running our column generation
algorithm again without imposing any hard limit on the load factors, thus obtaining a new schedule
informed by the new corrected fares and the corresponding changes in passenger demand. However,
the new optimized schedule adds and removes flights (and thus changes seat capacity) in some or all
segments. This, in turn, introduces a feedback effect because it alters the extent of the fare correction.
Therefore, we propose an iterative procedure in which a correction phase and a reoptimization phase
alternate until convergence. In our case, two iterations are enough to converge to stable fare values.

Table 9 presents the key financial performance metrics of the solutions obtained for the joint network
instance (YV + YX) by our approach without (second to fourth column) and with (fifth to seventh
column) the aforementioned Iterative Correction and Optimization (ICO) process. In addition, Ta-
ble 10 presents the key operational metrics for the same instance without (third to fifth column) and
with (sixth to eighth column) the ICO process. First, as expected, the operational and financial
performances of the “Freq±0” instances with and without the ICO process are quite similar to each
other. However, in the “Freq±1” and “Freq±2” instances, the ICO process leads to fewer and shorter
flights with slightly higher RASM and CASM values, slightly fewer passengers and similar average
fares, leading to slightly lower profits. Nevertheless, across all three scenarios (“Freq±0”, “Freq±1”,
and “Freq±2”), we continue to see a significant profit increase of between 3.68% and 8.84% relative
to the “Status Quo” solutions. This shows the relative stability of the overall improvements generated
by our approach under the effects of demand uncertainty and RM practices.
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