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Introduction

Humans are diploid organisms, that is DNA is organized in
pairs of chromosomes.

De�nition

single nucleotide polymorphism (SNP): site of human genome
showing a statistically signi�cant variability within a population.

Example: small portion of a chromosome.

taggtccCtatttCccaggcgcCgtatacttcgacgggTctata
taggtccGtatttAccaggcgcGgtatacttcgacgggTctata

Almost always, at each SNP site only two nucleotides out of
four (A, T, C, G) are observed.

A SNP can be either homozygous or heterozygous.
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Introduction

De�nition

Haplotype: it is the set of SNPs on a particular chromosome copy.

Example: haplotypes from the previous chromosome portion:
CCCT and GAGT.
Notation: denote with 0 and 1 the two possible nucleotides of every
SNP.

De�nition

Genotype: it provides information about both the alleles of every
SNP, specifying if it is homozygous or heterozygous.

Notation: denote with 0 or 1 homozygous SNPs, with 2
heterozygous sites.
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Introduction

De�nition

Compatible haplotype: a haplotype h is compatible with a genotype
g if for every site p for which gp 6= 2 we have gp = hp.

Given two vectors representing two haplotypes h1 and h2, we de�ne
their sum componentwise as:

(h1 ⊕ h2) =


0 if h1p = h2p = 0

1 if h1p = h2p = 1

2 if h1p 6= h2p

De�nition

Two haplotypes h1 and h2 resolve genotype g if g = h1 ⊕ h2.

Example: h1 = 10010 and h2 = 11001 resolve genotype g = 12022.
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Introduction

Problem:

given an individual , obtaining its haplotypes for each
chromosome is expensive,

obtaining its genotypes is cheaper.

But we still need to know the haplotypes: can we deduce them?

If a genotype has k heterozygous SNPs, there are 2k−1

possible pairs of haplotypes that resolve it.

Example: Genotype 12102.

Two pairs: {10100, 11101}, {11100, 10101}

Given a set of genotypes, there are di�erent sets of haplotypes
that resolve it.

We need a criterion to choose the most probable con�guration.
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Introduction

ASSUMPTION: parsimony principle. Use as few as possible
haplotypes to resolve a set of genotypes.

Example: G = {20122, 12102, 11122, 02122}

H ′ = {10100, 00111, 11100, 10101, 11101, 11110, 01110, 00101}
H ′′ = {10100, 00111, 10100, 11101, 11101, 11110, 00111, 01100}

Haplotype Inference by Pure Parsimony problem (HIPP)

Given a set of genotypes G , �nd a set of haplotypes H such that

for each genotype g ∈ G , there exists h1, h2 ∈ H such that
g = h1 ⊕ h2,

H has minimum cardinality.
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Di�erent approaches to the solution

Integer programming formulations of worst-case exponential
size, both in the number of variables and constraints (Gus�eld
(2003), Lancia and Sera�ni (2008))

use variables representing all possible haplotypes;

integer programming formulations of polynomial size and
hybrid formulations (Brown and Harrower (2004, 2005, 2006),
Lancia et al. (2004), Bertolazzi et al (2008), Catanzaro et al.
(2010))

the linear relaxation of these formulations is quite weak
addition of valid cuts;

quadratic, semide�nite programming approaches, of
exponential size;

SAT approaches (Lynce and Marques-Silva(2006), Graça et al.
(2011))
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First formulation (A) [1]

min
2m′∑
i=1

xi + (m −m′) (1)

s.t.
m+m′∑
i=1

y k
i = 2 ∀ k = 1 . . .m′ (2)

2m′∑
i=1

y k
i zip+

m+m′∑
i=2m′+1

y k
i g

i
p = 1 ∀ k = 1 . . .m′, p = 1 . . . n : g k

p = 2 (3)

zip ≥ y k
i ∀ i = 1 . . . 2m′, k = 1 . . .m′, p = 1 . . . n : g k

p = 1 (4)

zip ≤ 1− y k
i ∀ i = 1 . . . 2m′, k = 1 . . .m′, p = 1 . . . n : g k

p = 0 (5)

y k
i ≤ xi ∀ i = 1 . . . 2m′, k = 1 . . .m′ (6)

zip ∈ {0, 1} ∀ i = 1 . . . 2m′, p = 1 . . . n (7)

y k
i ∈ {0, 1} ∀ i = 1 . . .m + m′ , k = 1 . . .m′ (8)

xi ∈ {0, 1} ∀ i = 1 . . . 2m′ (9)
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Reformulation using Dantzig-Wolfe decomposition (B)

De�ne the set

X =conv

(
{(z , y , x ,w) ∈ {0, 1}m′(2n+m+m′+2)| wk

ip = yki zip,

zip ≥ yki if gk
p = 1, zip ≤ 1− yki if gk

p = 0,

yki ≤ xi ,
m′∑
k=1

yki ≥ xi

)
},

X is bounded,

{(zv , yv , xv ,wv )| v ∈ V } is the set of vertices of X ,

if (z , y , x ,w) ∈ X then (z , y , x ,w) =
∑

v∈V θv (zv , yv , xv ,wv ).
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Reformulation using Dantzig-Wolfe decomposition (B)

min
∑
v∈V

θv

2m′∑
i=1

(xv )i + (m −m′) (10)

s.t.
∑
v∈V

θv

m+m′∑
i=1

(yv )ki = 2 ∀ k = 1 . . .m′

(11)∑
v∈V

θv
[2m′∑
i=1

(wv )kip +
m+m′∑

i=2m′+1

(yv )ki g
i
p

]
= 1

∀ k=1...m′,
p=1...n:gk

p =2
(12)

∑
v∈V

θv = 1 (13)

θv ∈ [0, 1] ∀ v ∈ V (14)
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Alternative formulation (C)[1]

What do vertices represent?

{(zv )i}i=1,...,2m′ de�ne 2m′ haplotypes (not necessarily
distincts);

{(yv )i}i=1,...,m+m′ for each i identify the subset of genotypes
resolved by the i-th haplotype;

{(xv )i}i=1,...,2m′ counts how many haplotypes are actually
used.

De�ne the pairs q = (hq,Gq):

hq is a haplotype;

Gq is a subset of genotypes that can be resolved using hq.

Binary variables λq record if the pair q is used (λq = 1) or not
(λq = 0) in the solution of our problem.
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Alternative formulation (C)[1]

The formulation obtained:

min
∑
q∈Q

cqλq + (m −m′) (15)

s.t.
∑

q:gk∈Gq

λq = 2 ∀ k = 1 . . .m′ (16)

∑
q:gk∈Gq

hqp=1

λq = 1 ∀ k = 1 . . .m′, p = 1 . . . n : gk
p = 2 (17)

λq ∈ {0, 1} ∀ q ∈ Q (18)



Introduction Formulations Lower bounds Stabilization Results and conclusions

Comparison between the formulations

(A) is non-linear, if we want to solve it using linear
programming tecniques we need to linearize it;

The number of variables increases (linearly) as the number of
genotypes or the number of SNPs increase in (A), while in (C)
the number of variables increases exponentially;

The number of constraints increases (also linearly) as the
number of genotypes or SNPs increase for (A), (B) and (C)

(B) and (C) have less constraints than (A)

FOCUS ON

Solving the linear relaxation of formulation (C) with a column
generation approach.
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Standard column generation [1]

Pricing problem for (C):

PP1) haplotype h is �xed.

z(h) = max
m′∑
k=1

π̄k +
∑

p=1...n:gkp =2

hp=1

µ̄k
p

 χk (19)

s.t. hp ≤ 1− χk ∀ k = 1 . . .m′, p = 1 . . . n : g k
p = 0

(20)

hp ≥ χk ∀ k = 1 . . .m′, p = 1 . . . n : g k
p = 1

(21)

χk ∈ {0, 1} ∀ k = 1 . . .m′ (22)

Easily solved by inspection: χk = 1 i� gk is compatible with h
and coe�cient in brackets is ≥ 0.

Pair q? = (h,Gq?) to be added if z(h) > 0
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Standard column generation [1]

PP2) haplotype h is not �xed.

z = max
m′∑
k=1

π̄k +
∑

p=1...n:gkp =2

µ̄k
p ζp

 χk (23)

s.t. ζp ≤ 1− χk ∀ k = 1 . . .m′, p = 1 . . . n : g k
p = 0

(24)

ζp ≥ χk ∀ k = 1 . . .m′, p = 1 . . . n : g k
p = 1

(25)

χk , ζp ∈ {0, 1} ∀ k = 1 . . .m′, p = 1 . . . n (26)

It's a quadratic pricing problem.

Pair q? to be added is found if z > 1.
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Standard column generation [1]

Outline of the algorithm [CG]:

1) choose an initial feasible solution (starting set of variables)

2) solve the Restricted Master Problem (RMP) and get the
current value ṽ and solution λ̃;

3) get the associated dual variables π̄, µ̄;

4) solve the Pricing Problem:

solve PP1 for every �xed haplotype h. If a suitable q? is found,
then add it to RMP. Go back to 2). If not:
use a local search. If a suitable q? is found, add it to RMP. Go
back to 2). Otherwise:
solve PP2.

5) if PP2 does not �nd a suitable q?, STOP. Otherwise, add the
new variable to RMP and go back to 2)
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Computational challenges

Tailing-o� e�ect: only little progress is made near the optimal
solution

Highly degenerate problems: di�culty in recognising an
optimal solution

=⇒ Find a lower bound on the optimal solution as an early
termination condition.

Instability: the dual variables do not smoothly converge to the
optimal solution

=⇒ Use a stabilization technique: convex combination of dual
variables with previous values.
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Lagrangian lower bound for (B)

De�ne Θ = {θ ∈ [0, 1]|V || θv ≥ 0,
∑

v∈V θv = 1}
De�ne the Lagrangian function

L(π, µ) =min
θ∈Θ

{∑
v∈V

θv

2m′∑
i=1

(xv )i −
m′∑
k=1

πk(∑
v∈V

θv

m+m′∑
i=1

(yv )ki − 2
)
−

−
∑

k,p:gkp =2

µk
p

(∑
v∈V

θv
[2m′∑
i=1

(wv )kip +
m+m′∑

i=2m′+1

(yv )ki g
i
p

]
− 1
)}

=

= vD(π, µ) + min
v∈V

{2m′∑
i=1

(xv )i −
m+m′∑
i=1

m′∑
k=1

(yv )ki −
2m′∑
i=1

∑
k,p:gkp =2

µk
p(wv )kip−

−
m+m′∑

i=2m′+1

µk
p(yv )ki g

i
p

}
=

= vD(π, µ) + (m + m′)(c − vPP(π, µ))
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Lagrangian lower bound for (C)

Add a redundant constraint to formulation (C) acting as an
upper bound on the optimal solution.

M is an appropriate value: equal to the current objective value
of [CG]).

Formulation (C):

min
∑
q∈Q

cqλq + (m −m′) (27)

s.t.
∑

q:gk∈Gq

λq = 2 ∀ k = 1 . . .m′ (28)

∑
q:gk∈Gq

hqp=1

λq = 1 ∀ k = 1 . . .m′, p = 1 . . . n : g k
p = 2 (29)

∑
q∈Q

λq ≤ M (30)

λq ∈ [0, 1] ∀ q ∈ Q (31)
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Lagrangian lower bound for (C)

De�ne Λ = {λ ∈ [0, 1]|Q| : λq ≥ 0,
∑

q∈Q λ
q ≤ M}

De�ne the Lagrangian function

L(π, µ) = min
λ∈Λ

{∑
q∈Q

cqλq −
∑
k

πk( ∑
q:gk∈Gq

λq − 2
)
−

∑
k,p:gkp =2

µk
p

( ∑
q:gk∈Gq ,

hqp=1

λq − 1
)}

=

= vD(π, µ) + min
λ∈Λ

{∑
q∈Q

[
cq −

∑
k:gk∈Gq

πk −
∑

k:gk∈Gq

∑
p:gkp =2, hqp=1

µk
p

]
λq

}
=

= vD(π, µ) + M min
q∈Q

{
cq −

∑
k:gk∈Gq

πk −
∑

k:gk∈Gq

∑
p:gkp =2, hqp=1

µk
p

}
=

= vD(π, µ) + M(c − vPP(π, µ))

Better lower bound: M ≤ m + m′
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Improved algorithm

L(π, µ) ≤ zOPT for all (π, µ) feasible

Use a lower bound as an early termination condition

Compute lower bound when solving exact PP

Consider the dual solution of RMP: lower bound provided
without e�ort

Algorithm [CG] ends if

no suitable variable is found to be added to RMP,
the gap between the primal objective value and the lower
bound is less than a value ε.
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Convex combination with previous dual solutions

Basic idea

A stabilization method is used to bound the dual variables values.

Examples of stabilization methods:

Interior point stabilization,

Box-step method,

Bundle methods,

Convex combination with previous dual solutions

Merits of this procedure:

helps avoiding too large steps in the dual space

easy to implement: do not need to change the RMP
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The stabilized pricing algorithm

1) set 0 < α < 1, initialize (π̄, µ̄, ν̄) = 0,

2) solve the RMP and get the objective value zRM and the dual
variables associated (πRM , µRM , νRM),

3) compute
(πST , µST , νST ) = α(πRM , µRM , νRM) + (1− α)(π̄, µ̄, ν̄) to be
used in the pricing problem,

4) if q? violates a dual constraint w.r.t (πRM , µRM , νRM), then
add it to the RMP,

5) if the q? found is the optimal solution of PP2 and
LB(πST , µST , νST ) > LB(π̄, µ̄, ν̄), then update
(π̄, µ̄, ν̄) = (πST , µST , νST ),

6) iterate until zRM − LB(π̄, µ̄, ν̄) < ε.
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Convergence of the procedure

Lemma

If the solution of the pricing problem with stabilized coe�cients

does not give a variable that violates a dual constraint w.r.t.

(πRM , µRM , νRM), then

LB(πST , µST , νST ) > LB(π̄, µ̄, ν̄) + α(zRM − LB(π̄, µ̄, ν̄))

A misprice then is not a loss of time:

it guarantees an improvement on the lower bound,

the gap zRM − LB(π̄, µ̄, ν̄) is reduced of at least a factor
1/(1− α),

the stability center changes, so that we do not get stuck in a
non-optimal solution.
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Instances

Brown and Harrower instances

Real data and random instances

Instance # SNPs # genotypes #�xed % av. het. SNPs

1 10 50 11 39.80
2 30 36 4 25.10
3 30 20 4 39.67
4 30 12 3 33.06
5 30 7 1 55.71
6 50 10 2 52.80
7 50 5 2 37.60

implementation: C++ with SCIP 3.1 and Cplex 12.4 on an
Intel Core i7 2GHz

Set parameter for stabilization: α = 0.2

Set tolerance for Lagrangian bound: ε = 0.1
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Standard and Stabilized Column Generation

Column Generation
Instance time (s) # PP2 zLP − LB %Opt-PP2

1 297.11 367 0.02 35.05
2 37247,87 3447 0.04 29.23
3 21566,72 5744 0.00 19.16
4 1740.95 1905 0.09 34.10
5 6316.01 2801 0.02 49.82
6 36457.49 22105 0.17 0.01
7 1041.92 601 0.41 0.33

Stabilized Column Generation
Instance time (s) #PP2 zLP − LB %Opt-PP2

1 452.94 268 0.09 48.5
2 18226.36 1562 0.09 31.82
3 6825.06 1244 0.09 6.91
4 1109.67 596 0.10 22.65
5 753.55 462 0.10 15.58
6 7197.36 2149 0.08 1.58
7 147.09 268 0.09 13.06
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Standard and Stabilized Column Generation

Column Generation Stabilized Column Generation
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Conclusions and further work

Column generation was necessary to handle the great number
of variables. Anyway, there are issues to be overcome

One optimal solution is still found quite early if compared with
satisfying a termination condition
=⇒ look for a di�erent lower bound that dominate the current
one

Provide a better solution to start the column generation
procedure
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Thanks for the attention
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